

ASX Announcement

20 April 2022

ANOTHER BY-PRODUCT AND REVENUE STREAM FOR ROVER 1

Castile Resources Limited (ASX:CST) ("Castile" or the "Company") is pleased to provide an update on its Total Mineral Resource Estimate at Rover 1.

In addition to the Mineral Resource Estimate for the Rover 1 Project (ASX:CST 2 March 2022 "Large Increases In Gold, Copper And Cobalt At Rover 1") Castile has now received the technical data to enable the magnetite component of this resource to be estimated. Castile now adds 933,000 tonnes of magnetite to that Indicated Resource category.

Mark Hepburn, Managing Director of Castile commented:

"The addition of a recoverable magnetite product is a fantastic bonus for the Rover 1 Project. In addition to the recovery of gold, copper and cobalt, the host rock contains approximately 24% magnetite. Castile can recover 68% of this material as a high quality (P₉₅53mm) magnetite product that is saleable directly to end users as a density modifying mineral.

This aligns with our goal of extracting the maximum value from each tonne that we mine in an environmentally responsible way. It's important for our shareholders to know that mining and planning will focus on the key metals gold and copper, with the cobalt and magnetite as additional by-product revenues."

Classification		Rover 1 Mineral Resource Estimate				
	Gold (Oz)	Copper (T)	Cobalt (T)	Bismuth (T)	Silver (Oz)	Magnetite (T)
Indicated	242,600	63,400	2,900	4,200	302,300	933,000
Inferred	20,900	14,000	900	700	48,000	163,000
Total	263,500	77,400	3,800	4,900	350,300	1,096,000

Castile Resources 2022 Rover 1 Metal Resource Estimate

Castile Resources 2022 Rover 1 Resource Estimate

2g/t Gold Equivalent Cut Off							
Grade				Gi	rade		
Classificati		Gold	Copper	Cobalt	Bismuth	Silver	Magneti
on	Tonnes	(g/t)	(%)	(%)	(%)	(g/t)	te (%)
Indicated	3,882,000	1.94	1.63	0.07	0.11	2.42	24.04
Inferred	865,000	0.75	1.62	0.10	0.08	1.73	18.79
Total	4,747,000	1.73	1.63	0.08	0.10	2.30	23.08

The test work supervised by METS Engineering on behalf of Castile, estimated a metallurgical recovery of 67.7% to a high quality P_{95} 53mm magnetite rich product containing 96.4% magnetite which Castile has certified to Australian Standards. ("New Environmentally Sustainable Product at Rover" 19 November 2021)

The indicative flow sheet for Rover 1 is shown below. The magnetite is concentrated by applying magnetic separation prior to the sulphide float. This separates the magnetite and allow the production of the high-grade magnetite.

ASX Announcement

20 April 2022

Indicative Processing Flow Sheet for Rover 1

For further information please contact:

Mark Hepburn Managing Director Castile Resources Limited

<u>info@castile.com.au</u> Phone: +61 89488 4480 Castile Resources Limited 7/189 St Georges Terrace Perth, WA, 6000

This announcement was approved for release by the Castile Board

ASX Announcement

20 April 2022

Competent Person Statement

Geology

The information contained in this report that related to exploration results and mineral resources is based on, and fairly and accurately represent information and supporting documentation prepared by Mark Savage. Mr Savage is a full-time employee of Castile, and a Member of The Australasian Institute of Mining and Metallurgy. Mr Savage has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets, and Mineral Resources. Mr Savage consents to the inclusion in the report of the matters based on the exploration and resource results in the form and context in which they appear.

Metallurgy

The information contained in this report is based on, and fairly and accurately represent the information and supporting documentation prepared by Damian Connelly. Mr Connelly is a full time employee of METS Engineering who are a Contractor to Castile, and a Fellow of The Australasian Institute of Mining and Metallurgy. Mr Connelly has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves. Mr Connelly consents to the inclusion in the report of the matters based on the results in the form and context in which they appear.

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques Drilling techniques Drill sample recovery	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of final construction. 	 All data used in the following sections at Rover 1 has been gathered from diamond core. Multiple sizes have been used historically; HQ, NQ and BQ. Samples are selected to lie on geological boundaries, with intervals selected of lengths between 0.1 to 1.1m. Historic samples selected on 1m intervals. Samples are halved using an automatic core saw then individual samples collected in prenumbered calico sample bags. The sample of between 0.5kg to 3kg is whole crushed then pulverised to produce a 40g charge for fire assay with AAS finish for Au and a further sample for mixed acid digest with an ICP-MS finish for Ag, As, Bi, Co, Cu, Pb and Zn. To ensure representivity of samples, field blanks and certified reference material are inserted at a nominal ratio of 1:20 samples. Sample recovery is recorded on retrieval of the core tube, measuring recovered core against drill string advance. No apparent relationship has been observed between sample recovery and grade. No has sample bias due to preferential loss or gain of fine or coarse material been noted.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation	All geological data has been visually logged and validated by the relevant area geologists, recording lithology, alteration, mineralisation, structure, veining
	mining studies and metallurgical studies.	magnetic susceptibility and geotechnical data.

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	Logging is quantitative in nature.All holes are logged completely.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond Drilling - Half-core niche samples, sub-set via geological features as appropriate. Historic core Half core undergoes total preparation. Castile sample preparation process consists of; Crushing using a Boyd Crusher to achieve a maximum sample size of 2mm. The crushed sample is split down to a 3kg sample via a rotating sample divider attached directly to the Boyd Crusher. The crushed sample is then pulverised in a Labtech LM5 Ring Mill such that 90% passes 75um. 200g is split and placed in a packet for analytical work. For every 20th sample, an approximately 25g sample is wet screened to check grind effectiveness. From the analysis sample, 40g is taken for fire assay, while a 0.2g potion is taken for acid digestion. These samples are extracted from the packet with a spatula and weighed out. QA/QC is ensured during the assays process via the use of blanks, standards and repeats. QA/QC is ensured during the assays process via the use of blanks, standards and repeats at a NATA / ISO accredited laboratory. In the case of Historic sampling, preparation consisted of the following: Crushing using a vibrating jaw crusher to achieve a maximum sample size of 4 mm. The sample is then weighed, and if the sample weight is greater than 3.2 kg, the sample is split into two using a Jones-type riffle splitter. For samples weighing greater than 3.2 kg, the first portion is removed and second portion is homogenised in the same machine. Once complete, the first portion is put back in the

Criteria	JORC Code explanation	Commentary
Criteria Quality of assay data and laboratory tests	 JORC Code explanation The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bigs) and practices in hure here astronisticad 	 LM5 and both portions are homogenised. From the pulverised sample, approximately 200 g is collected via a scoop as a master sample for assaying. For every 20th sample, an approximately 25 g sample is screened to 75 microns to check that homogenising has achieved 80% passing 75 microns. For every 20th sample, an approximately 25g sample is wet screened to check grind effectiveness. From the analysis sample, 30g is taken for fire assay, while a 0.2g potion is taken for acid digestion. These samples are extracted from the packet with a spatula and weighed out. The sample sizes are considered appropriate to the grainsize of the material being sampled. The un-sampled half of diamond core is retained for check sampling if required. Analysis of Castile drill core for Au, Ag, Bi, Co, Cu, Pb and Zn is as follows; Gold (Au-AAS scheme – lower detection limit = 0.01ppm, upper detection limit = 100ppm). A 40g charge of prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents and then cupelled to yield a precious metal bead. The bead is then dissolved in acid and analysed by atomic absorptions are consordered sampler matrix-matched standards
	accuracy (i.e. lack of blas) and precision have been established.	 Samples returning assay values in excess of 10g/t Au were repeated. Silver, bismuth, cobalt, copper, lead and zinc samples are digested using a 4 acid digest. The subsequent solution is analysed by inductively coupled plasma - atomic emission spectroscopy or by atomic absorption spectrometry. Analysis of Historic drill core for Au, Ag, Bi, Co, Cu, Pb and Zn is as follows; Gold (Au-AAS scheme – lower detection limit = 0.01ppm, upper detection limit = 100ppm). A 30-40g charge of prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax,

Criteria	JORC Code explanation	Commentary
		 silica and other reagents and then cupelled to yield a precious metal bead. The bead is then dissolved in acid and analysed by atomic absorption spectroscopy against matrix-matched standards. Samples returning assay values in excess of 100g/t Au were repeated using the screen-fire method. Silver, bismuth, cobalt, copper, lead and zinc samples are digested using a 4 acid digest. The subsequent solution is analysed by inductively coupled plasma - atomic emission spectroscopy or by atomic absorption spectrometry. No significant QA/QC issues have arisen in recent drilling results. Magnetite content was determined through mineral phase identification using Corescan[®] hyperspectral core imaging system (Corescan[®] HCI-4.1) comprising a shortwave infrared imaging spectrometer at ~500 µm spatial resolution (~514 bands across 450 - 2500nm). This analysis method is well established for quantitative determination of iron ore minerals. A total of 27 holes for 2224m core was scanned. The sample material was checked for surface contamination and cleaned to ensure a compliant surface for scanning. Half core (HQ or NQ) was scanned in the core box. Prior to mineral identification, any non-core / non-sample material was identified and masked. The masked material is then excluded from subsequent mineral identification processes, mineral maps, and numerical logs. The hyperspectral geology team using the company's proprietary software, Chameleon™. Mineral identification is determined using best-fit algorithms that compare the spectral signature taken from the sample with spectral reference libraries. Mineral compositional parameters (e.g. cation substitutions, crystallinity) are calculated for the relevant mineral
		• mineral occurrence, spectral parameter images and mineral

Criteria	JORC Code explanation	Commentary
		 abundance logs at ~500μm spatial resolution are generated for each sample interval for viewing and exported as (.CSV) format. These mineral logs include the relative abundances of each mineral as well as spectral parameters such as mineral composition, crystallinity, and mineral sub-speciation proportions. These assay methodologies are appropriate for the style of mineral deposit under consideration.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Anomalous intervals as well as random intervals are routinely checked assayed as part of the internal QA/QC process. Several twinned holes have been drilled with no significant issues highlighted. Primary data is collected on a ruggedised computer, on predefined and self-validating worksheets. This data is imported into a relational database (DataShed) and is backed up regularly. All data used in the calculation of resources is compiled in databases which are overseen and validated by senior geologists. No primary assays data is modified in any way.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All data is spatially oriented by survey controls via direct pickups by DGPS. Drillholes are all surveyed downhole. Modern holes are surveyed by north seeking gyro tools. All drilling is undertaken in MGA grid. Topographic control is generated from a combination of aerial photogrammetry and ground-based surveys. This methodology is considered adequate for the resource in question.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drilling has been undertaken on a nominal 40x40m spacing, infilled to a nominal 20x20m spacing where significant mineralisation has been identified. No compositing of primary samples is undertaken prior to analysis.
Orientation of data in relation	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key 	 Drilling intersections are nominally designed to be normal to the orebody under consideration as far topography and economics allows. It is not considered that drilling orientation has introduced an appreciable

Criteria	JORC Code explanation	Commentary
to geological structure	mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	sampling bias.
Sample security	• The measures taken to ensure sample security.	 Individual samples in calico samples are collected in groups of 5 and placed into poly weave bags and secured with a zip-tie. All poly weave bags of a submission are then placed within a bulka bag, which is then sealed before delivery to a third party transport service who provides a tracking number. The transport contractor then relays the samples to the independent laboratory contractor.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Site generated data is routinely reviewed by the Castile corporate technical team.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Rover Project comprises 5 granted exploration leases. Native title interests are recorded against the Rover Project tenements. The Rover Project tenements are held by Castile Resources exclusively. Third party royalties exist across various tenements at the Rover Project, over and above the Northern Territory government royalty. Castile operates in accordance with all environmental conditions set down as conditions for grant of the leases. There are no known insues regarding security of tenure. There are no known impediments to continued operation.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 The Tennant Creek area has an exploration and production history in excess of 100 years. The Rover area in particular has an intensive exploration history dating back to the 1970's.
Geology	• Deposit type, geological setting and style of mineralisation.	 The Rover Project is presently considered to be associated with a southern repeat of the 1860-1850Ma Warramunga Province. Recent dating by the

Criteria	JORC Code explanation	Commentary
		 NTGS indicates the host rock date equivalent to the Ooradidgee. This is a weakly metamorphosed succession of partly tuffaceous sandstones, siltstones and turbidite shales. Locally the turbidite metasediments are variably altered by hematite and silica flooding. Mineralisation is mainly of the Iron Ore Copper-Gold (IOCG) type, particularly the Tennant Creek sub-type. Massive ironstone comprised of magnetite or hematite +/-quartz is interpreted to be alteration of metasediments within a structural trap. Copper manifests as chalcopyrite, associated with breccia fill within magnetite-quartz ironstones and Jasper/BIF that often form an alteration transition to a chlorite alteration envelope. Pervasive sub-economic copper levels can persist throughout the zone. Economic levels of copper are dominantly contained in the lower massive magnetite zone of the ironstone bodies, particularly where intense chlorite alteration replaces magnetite laterally and at depth, grading into magnetite dusted quartz veins, with bonanza grades associated with massive pyrite with subordinate bismuthite. Cobalt appears to have a direct relationship with pyrite.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All drillhole information reported has been incorporated into the Mineral Resource. No new exploration results are being presented in this release.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results 	 All drillhole information reported has been incorporated into the Mineral Resource. Assay results are reported on a length weighted average basis. Assay results are reported above a 0.5g/t Au / 0.5% Cu or 0.5% Pb + Zn cut

Criteria	JORC Code explanation	Commentary
	 and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	offs. • Results reported may include up to two metres of internal dilution below a 0.5g/t Au / 0.5% Pb + Zn / 0.5%m Cu.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 All drillhole information reported has been incorporated into the Mineral Resource. Interval widths are reported as downhole width unless otherwise stated.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 All drillhole information reported has been incorporated into the Mineral Resource. Schematic plans and sections presented. No new exploration results are being presented in this release.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drillhole information reported has been incorporated into the Mineral Resource. No new exploration results are being presented in this release.
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All drillhole information reported has been incorporated into the Mineral Resource. No new exploration results are being presented in this release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Ongoing exploration and mine feasibility assessments continues to take place at the Rover Project.

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Drillhole data is stored in a Maxwell's DataShed based on the Sequel Server platform which is currently considered "industry standard". As new data is acquired it passes through a validation approval system designed to pick up any significant errors before the information is loaded into the master database. The information is uploaded by a series of Sequel routines and is performed as required. The database contains diamond drilling (including geotechnical and specific gravity data), face chip and sludge drilling data and some associated metadata. By its nature this database is very large, and therefore exports from the main database are undertaken (with or without the application of spatial and various other filters) to create a database of workable size, preserve a snapshot of the database at the time of orebody modelling and interpretation and preserve the integrity of the master database. In addition to data upload validation, data is visually checked within a 3D work space (Surpac and Leapfrog) to ensure spatial data is correct and consistent with previous validated drilling (drill hole azimuths, dips, sampling, geology).
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mr Savage has been routinely on-site from 2019, reviewing historic core, supervising drill programs relating to recent exploration results and the resource under consideration.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. 	 Geological interpretation of the deposit was carried out using a systematic approach to ensure that the resultant estimated Mineral Resource was both sufficiently constrained, and representative of the expected sub-surface conditions. In all aspects of resource estimation, the factual and interpreted geology was used to guide the development of the interpretation of mineralisation zones. Mineralisation is primarily controlled by subvertical structures interacting with contrasting geology rheology to generate brittle

	• The factors affecting continuity both of grade and geology.	 fracturing. These brecciated zones have focused mineralising fluids, resulting in deposition of sulphide phases. Mining of similar deposits in the Tennant Creek region provides confidence in the current geological interpretation.
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 The Rover 1 deposit is mineralised over a strike length of over 540m, a lateral extent of +70m and a depth of over 650m. Ironstone bodies are oriented east-west, steeply dipping north with a moderate westerly plunge.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 All modelling work was undertaken by Castile Resources, carried out in three dimensions using Surpac (mineral domains) and Leapfrog (geological domains). Resource estimation was undertaken by Cube Consulting, under the direction of Castile Resources. After validating the drillhole data to be used in the estimation, interpretation of the orebody is undertaken in sectional and / or plan view to create the outline strings which form the basis of the orebody wireframe. Wireframing is then carried out using a combination of automated stitching algorithms and manual triangulation to create a three-dimensional representation of the sub-surface mineralised body. Copper and gold domains were modelled separately. Drillhole intersections within the 3D mineralised body are defined and used to flag the appropriate sample records within the drillhole database tables for compositing purposes. Drillholes are subsequently composited to allow for grade estimation. In all aspects of resource estimation the factual and interpreted geology was used to guide the development of the interpretation. Once sample data has been composited, statistical analysis is undertaken on mineral domains to assist with determining estimation parameters, top-cuts etc. Variographic analysis of individual domains is undertaken and incorporated with observed geological and geometrical features to determine the appropriate search parameters.

		 An empty block model is created for the area of interest. The model contains attributes set at background values for the various elements of interest as well as density, and estimation parameters that are subsequently used to assist in resource categorisation. The block sizes used in the model vary depending on orebody geometry, minimum mining units, estimation parameters and levels of informing data available. Grade estimation is undertaken using ordinary kriging as the estimation method. The method is considered appropriate for the style of mineral deposit under consideration. In some circumstances where sample populations are small, and geostatistical trends unable to be interpreted, the domain was assigned the declustered mean composite grade. Both by-product and deleterious elements are estimated at the time of primary grade estimation if required. Statistical analysis has identified a relationship between gold- silverbismuth and a separate copper-cobalt relationship. There are no assumptions made about the recovery of by-products. The resource is then depleted for mining voids where applicable and subsequently classified in line with JORC guidelines utilising a combination of estimation derived parameters and geological knowledge. This approach has proven to be applicable to similar deposits.
Moisture	• Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnage estimates are dry tonnes.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Rover 1 mineral resource inventory comprises material at 2.0g/t Au equivalent. The 2.0g/t Au equivalent cut-off grade represents the economic cut-off of mining and processing gold only <i>excluding CAPEX</i>. Au equivalent is calculated on gold and copper <i>only</i> by the following formulae: AUEQ = Au + (Cu x 0.000169). Cu assays are in ppm. Gold Price = US\$1,800/oz and Cu US\$9,800/tonne.

Mining factors or assumptions	•	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	•	Underground mining is assumed on the basis that similar deposits have been mined successfully by underground methods at the nearby Tennant Creek field. Minimum mineralisation widths and composite grades have been considered during the interpretation stage. There may be cases where lower grade material is incorporated to maintain geological continuity of the interpretation.
Metallurgical factors or assumptions	•	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.		 Conventional processing methods are assumed on the basis that similar deposits have been successfully mined and processed at the nearby Tennant Creek field.
Environmental factors or assumptions	•	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	•	Castile operates in accordance with all environmental conditions set down as conditions for grant of the respective leases. Castile is investigating mitigation of environmental impacts by storage of PAF material underground and utilising tails into paste fill to minimise surface disturbance and hydrology impacts. Use of paste fill will aid in maximising extraction of the resource.
Bulk density	•	Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by	•	Bulk density of mineralisation at the Rover Project is variable, dependant on lithology, alteration and mineralisation. Geological technicians perform routine density test-work on core samples of both host rock and mineralisation. <i>All</i> sampled intervals are tested for density.

	 methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Density measurements have been determined using the water immersion technique on core. Bulk density is modelled by lithological domains.
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Resources are classified in line with JORC guidelines utilising a combination of estimation quality parameters, and geological knowledge. This approach considers all relevant factors and reflects the Competent Person's view of the deposit.
Audits or reviews	• The results of any audits or reviews of Mineral Resource estimates.	 Resource estimates were calculated by independent contractors and peer reviewed by Castile Resources' Corporate technical team.
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The reported resource estimate is considered robust, and representative of the deposits on a global scale. The relative accuracy and confidence of the resource is reflected in the classification category assigned. No production data exists to compare the resource estimate against.

Rover 1 mineral resource procedure, geological interpretation and assumptions

The global resource for the Rover 1 mineralised area is outlined in Table 1 for all material \geq 2.0 g/t AuEq. The numbers presented in Table 1 below have not been reported within any underground mine designs and no recoveries have been applied to the metal equivalence calculation.

The metal equivalence equation is defined as:

Au Equivalent = Au + (Cu x 0.000169). Modelled copper units are in ppm.

Table 1: Global mineral resource for the Rover 1 mineralized area. The reportable numbers are based on a ≥ 2.0 g/t AuEq threshold and not constrained within any mining design.

2g/t Au	IEQ COG	Grade					Metal						
	Tonnes	Au g/t	Cu %	Co %	Bi %	Ag g/t	Magn wt%	Au Oz	CuT	СоТ	BiT	Ag Oz	Magn kT
Measured	-	-	-	-	-	-	-	-	-	-	-	-	-
Indicated	3,882,000	1.94	1.63	0.07	0.11	2.42	24.04	242,600	63,400	2,900	4,200	302,300	933
Inferred	865,000	0.75	1.62	0.10	0.08	1.73	18.79	20,900	14,000	900	700	48,000	163
Total	4,747,000	1.73	1.63	0.08	0.10	2.30	23.08	263,500	77,400	3,800	4,900	350,300	1,096

The Rover 1 mineral resource estimate (MRE) was undertaken to include the 68 diamond drill holes completed after 2011 and subsequent MRE. The 2022 MRE has included an update to the interpretation of the main lithological units and the estimation domains for Au and Cu.

The interpreted mineralisation is interpreted to be structurally controlled; that is, associated with fold axial plane shearing interacting with lithological rheology differences which has led to brittle deformation in ironstone bodies that has subsequently focused infiltration of mineralising fluids.

The interpolation of Au, Cu, Co, Ag, Bi, magnetite and SG was based on a number of different approaches, depending on the characteristics of the estimation domain under consideration. The larger, non-halo domains were estimated using ordinary kriging (OK), using top-cuts to control the influence of discontinuous extreme high-grade material. Where meaningful variograms could not be generated with smaller sample populations, the declustered mean was assigned. A distance based top-cutting approach was implemented for the background halo domains to limit the extrapolation of higher-grade intercepts into poorly informed areas.

Comparative analysis between the 2019 prospectus figures (2011 MRE with updated classification) and the 2022 estimate at a 2.5 AuEq calculated on the 2019 Au equivalency calculation is presented in Table 2 below. The gold equivalency is calculated as $AuEq = Au + Ag \times 0.0136 + Bi \times 4.6753 + Co \times 13.0909 + Cu \times 1.9793$

The 2022 MRE has resulted in an increase to the indicated category of +26% tonnes, +43% gold ounces and +81% copper tonnes at the 2.5g/t AuEq cut-off. The significant reduction in inferred material is directly related to limiting the extent of the Jupiter Deeps mineralisation interpretation based on drilling post 2011 (Figure 1 and Figure 2).

	2022 MRE at 2.5 g/t Au Equivalent								
ResCat	Tonnes	Au g/t	Cu %	Co %	Bi %	Ag g/t			
Measured	-	-	-	-	-	-			
Indicated	4,547,931	1.69	1.53	0.07	0.10	2.28			
Inferred	1,444,645	0.61	1.14	0.10	0.16	1.63			
Total	5.992.576	1.43	1.43	0.08	0.12	2.13			

Table 2: Global comparison between the 2022 and 2019 Rover 1 MRE at a ≥2.5 g/t Au equivalence	<u>ڊ</u>
Note – Magnetite not previously estimated.	

Bi %

60%

162%

85%

Ag g/t

	275,500	86,000	4,700	6,900	409,800				
	_								
	Metal								
	Au Oz	CuT	СоТ	BiT	Ag Oz				
	-	-	-	-	-				
1	173,200	38,400	1,800	6,100	247,800				
C	213,500	44,700	2,400	3,200	210,500				
	386,700	83,100	4,200	9,300	458,300				

Metal

СоТ

3,300

1,400

BiT

4,600

2,300

Ag Oz

333,900

75,900

CuT

69,500

16,500

Au Oz _ 247,200

28,300

	Tonnes	Au g/t	Cu %	C0 %	BI %	Ag g/t	
Measured	-	-	-	-	-	-	
Indicated	3,607,525	1.49	1.06	0.05	0.17	2.14	
Inferred	3,275,736	2.03	1.37	0.07	0.10	2.00	
Total	6,883,261	1.75	1.21	0.06	0.14	2.07	
2022 vs 2019 relative differences							

Cu %

143%

83%

119%

Co %

148%

135%

131%

Au g/t

113%

30%

82%

Tonnes

126%

44%

87%

Measured

Indicated

Inferred

Total

2019 MRE at 2.5 g/t Au Equivalent

	-								
		Metal							
gg/t	Au Oz	CuT	СоТ	BiT	Ag Oz				
-	-	-	-	-	-				
107%	143%	181%	183%	75%	135%				
82%	13%	37%	58%	72%	36%				
103%	71%	103%	112%	74%	89%				

Figure 2: Comparison of 2022 and 2019 Copper Domains

Introduction

Castile's Rover Project is located approximately 100km west-southwest of the town of Tennant Creek, comprising 7 granted tenements within aboriginal freehold lands of the Karlantijpa South Land Trust and Karlantijpa North Land Trust. The project area is considered prospective for copper, gold and base metals mineralisation associated with Iron Oxide Copper Gold (IOCG) mineralising systems. ELR29957 and ELR29958 contain the high-grade iron oxide-copper-gold resource at the Rover 1 prospect, and EL27039 hosts two advanced IOCG mineralised systems including the Explorer 108 Pb-Zn-Ag resource and the Explorer 142 Cu-Au prospect. The presence of these mineralised systems demonstrates the excellent prospectivity of the Rover field. Exploration has been carried out over the region sporadically over the past 40 years. Much of the work has been restricted to airborne and ground geophysical techniques, with detailed ground geophysics and diamond drilling on several discrete magnetic anomalies.

Location and Access

Access to the project is via the Stuart Highway 6km south of Tennant Creek, then west along the unsealed Ngapamilarnu Outstation road for approximately 100 kilometres. Access within the project area is via local exploration tracks which have been upgraded from previous exploration tracks. No access tracks occur west of the Explorer 108 prospect within EL27039.

Exploration by Castile is based on the temporary exploration camp at Rover 1, where the Company has re-established a water bore, plumbing, and tracks associated with the old AOM camp. Additional caravans, temporary accommodation, cooking facilities, fuel storage, communications and core handling requirements have been mobilised to the site from the previous camp at Ngapamilarnu Outstation.

Figure 3: Location Plan and Tenure of the Rover Project

Tenement Details

In November 2008 combined reporting status was granted by the Northern Territory Department of Regional Development, Primary Industries, Fisheries and Resources over six granted tenements forming a contiguous group within the Rover Project. These were ELs 8823, 8994, 24541, 24989, 25427 and 25511, which comprised the Rover Combined Reporting Group GR107. In 2009 Exploration Licence 27039 was granted to cover the combined areas of ELs 8823 and 8994, which expired on 7 March 2009. The EL has been included in GR107 (Figure 1). In September 2013, EL24989 and approximately 7.26km² of the northeast corner of EL24541 of which the Rover 1 deposit occupies were converted to Exploration Licences in Retention, ELR29958 and ELR29957 respectively. In August 2019, Els 27292 and 27372 were acquired from Adelaide Exploration Pty Ltd. These additional tenements were incorporated into the GR107 combined reporting group in February 2020. All tenements are owned 100% by Castile Resources Pty Ltd. Castile was de-merged from Westgold Resources Ltd as an independent commercial entity in December 2019.

Castile was granted permission to explore and potentially mine any economic minerals discovered upon ELs 8823 and 8994 under the provisions of the Babylon Agreement, an agreement between Castile and the Central Land Council as the representative body for the traditional aboriginal communities who own the lands. This agreement has been transferred to EL27039. Castile has also negotiated two Exploration Deeds with the local traditional owners through the CLC, for ELs 24541, 25511, 27039, 27292 and 27372.

Lease	Project	Granted Blocks	Application Date	Grant Date	Expiry Date
EL24541	Rover	128	30/12/2004	18/12/2007	17/12/2021*
EL25511	Rover	38	27/07/2006	18/12/2007	17/12/2021*
EL27039	Rover	77	23/10/2008	15/05/2009	14/05/2023
EL27292	Rover	12	27/05/2010	27/05/2010	26/05/2022
EL27372	Rover	77	27/05/2010	27/05/2010	26/05/2022
ELR29957	Rover	2	26/04/2013	15/09/2013	16/09/2023
ELR29958	Rover	1	26/04/2013	15/09/2013	16/09/2023

Table 3: Tenement details - * renewal application entered.

BLOCK MODEL DATA SUMMARY

Datum

The estimation and interpretation process were conducted using the MGA94 - 53 grid datum.

Drilling

The Rover 1 mineral deposit has been drilled on a nominal 40m x 40m spacing, infilled to 20m x 20m through volumes containing significant mineralisation. Drilling post 2011 has targeted the Western Lode and the Jupiter Deeps mineralised areas as well as some infill drilling in the main Jupiter zone (2020, 2021). A total of 12 holes and 20 daughter holes were drilled for 16,459.74m cored and 4923 samples.

Figure 4: Rover 1 drill hole locations with interpreted mineralisation domains. Green holes are pre 2012, magenta drill holes are from the 2012 to 2021 drilling programs. The drill holes include the Westgold and Adelaide Resource datasets.

All drilling is undertaken in MGA. Data is spatially oriented by survey controls via direct pickups by DGPS. Drillholes are all surveyed downhole. Modern holes are surveyed by north seeking gyro tools. Topographic control is generated from a combination of aerial photogrammetry and ground-based surveys. This methodology is considered adequate for the resource under consideration.

Sampling and Preparation

All data used in the calculation of the Rover 1 mineral resource 1 has been gathered from diamond core. Multiple sizes have been used historically; HQ, NQ and BQ. Core samples are selected to lie on geological boundaries, with intervals selected of lengths between 0.1 to 1.1m. Historic samples were selected on 1m intervals, irrespective of geology. To ensure representivity of samples, field blanks and certified reference material (CRM) are inserted at a nominal ratio of 1:20 samples. Sample recovery is recorded on retrieval of the core tube, measuring recovered core against drill string advance. No apparent relationship has been observed between sample recovery and grade. No has sample bias due to preferential loss or gain of fine or coarse material been noted. Samples are halved using an automatic core saw then individual samples collected in prenumbered calico sample bags. The un-sampled half of diamond core is retained for check sampling if required. Individual sample bags are placed in lots of 5 into poly weave bags annotated with the sample number series within and closed by zip tie. All samples are then placed into a bulka bag and transported to the certified laboratory.

In the case of pre 2021 drilling, samples underwent the following laboratory preparation:

- Half core undergoes total preparation, crushed using a vibrating jaw crusher to achieve a maximum sample size of 4 mm.
- The sample is then weighed, and if the sample weight is greater than 3.2 kg, the sample is split into two using a Jones-type riffle splitter.
- The crushed sample is then pulverised in a Labtech LM5 Ring Mill such that 90% passed 75um.
- For samples weighing greater than 3.2 kg, the first portion is removed and second portion is homogenised in the same machine. Once complete, the first portion is put back in the LM5 and both portions are homogenised.
- From the pulverised sample, approximately 200 g is collected via a scoop as a master sample for assaying.
- For every 20th sample, an approximately 25 g sample is screened to 75 microns to check that homogenising has achieved 90% passing 75 microns.
- From the analysis sample, 30g is taken for fire assay, while a 0.2g potion is taken for acid digestion. These samples are extracted from the packet with a spatula and weighed out.

Post 2021 sample preparation process consists of;

- Crushing using a Boyd Crusher to achieve a maximum sample size of 2mm.
- The crushed sample is split down to a 3kg sample via a rotating sample divider attached directly to the Boyd Crusher.
- The crushed sample is then pulverised in a Labtech LM5 Ring Mill such that 90% passes 75um. 200g is split and placed in a packet for analytical work.
- For every 20th sample, an approximately 25g sample is wet screened to check grind effectiveness.
- From the analysis sample, 25g is taken for fire assay, while a 0.2g potion is taken for acid digestion. These samples are extracted from the packet with a spatula and weighed out.
- Umpire laboratory checks were performed to validate the representivity of the 25g fire assay by analysis on 30g fire assays. No bias was observed.

The sample sizes are considered appropriate to the grainsize of the material being sampled. QAQC is ensured during sampling via the use of sample ledgers, blanks, CRM and repeats. QAQC is ensured during the assays process via the use of blanks, CRM and repeats at a NATA / ISO accredited laboratory.

Analysis Methods

Analysis of Castile drill core for Au, Ag, Bi, Co, Cu, Pb and Zn is as follows:

- Gold (Au-AAS scheme lower detection limit = 0.01ppm, upper detection limit = 100ppm). A 25-40g charge (dependant on vintage) of prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents and then cupelled to yield a precious metal bead.
- The bead is then dissolved in acid and analysed by atomic absorption spectroscopy against matrixmatched standards.
- Samples returning assay values in excess of 10g/t Au were repeated.
- Silver, bismuth, cobalt, copper, lead and zinc samples are digested using a 4 acid digest.
- The subsequent solution is analysed by inductively coupled plasma atomic emission spectroscopy or by atomic absorption spectrometry.

Analysis of Historic drill core for Au, Ag, Bi, Co, Cu, Pb and Zn is as follows:

- Gold (Au-AAS scheme lower detection limit = 0.01ppm, upper detection limit = 100ppm). A 30-40g charge of prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents and then cupelled to yield a precious metal bead.
- The bead is then dissolved in acid and analysed by atomic absorption spectroscopy against matrixmatched standards.
- Samples returning assay values in excess of 100g/t Au were repeated using the screen-fire method.
- Silver, bismuth, cobalt, copper, lead and zinc samples are digested using a 4 acid digest.
- The subsequent solution is analysed by inductively coupled plasma atomic emission spectroscopy or by atomic absorption spectrometry.

These assay methodologies are appropriate for the style of mineral deposit under consideration.

Magnetite content was determined through mineral phase identification using Corescan® hyperspectral core imaging system (Corescan[®] HCI-4.1) comprising a shortwave infrared imaging spectrometer at ~500 μm spatial resolution (~514 bands across 450 - 2500nm). This analysis method is well established for quantitative determination of iron ore minerals. A total of 27 holes for 2224m core was scanned. The sample material was checked for surface contamination and cleaned to ensure a compliant surface for scanning. Half core (HQ or NQ) was scanned in the core box. Prior to mineral identification, any non-core / non-sample material was identified and masked. The masked material is then excluded from subsequent mineral identification processes, mineral maps, and numerical logs. The hyperspectral datasets were processed by Corescan's® experienced spectral geology team using the company's proprietary software, Chameleon™. Mineral identification is determined using best-fit algorithms that compare the spectral signature taken from the sample with spectral reference libraries. Mineral compositional parameters (e.g. cation substitutions, crystallinity) are calculated for the relevant mineral groups. Mineral occurrence, spectral parameter images and mineral abundance logs at ~500µm spatial resolution are generated for each sample interval for viewing and exported as (.CSV) format. These mineral logs include the relative abundances of each mineral as well as spectral parameters such as mineral composition, crystallinity, and mineral sub-speciation proportions. Relative abundance logs were used as a proxy for volume. Mineral phases identified averaged 96% of area, these unknown areas were assumed as silicate minerals. Proxy volume was multiplied by the SG of the mineral identified and a weight percent calculated.

QAQC

The QAQC for sampling associated with drillhole programs at Rover 1 up to the end of 2015 was independently assessed by Cube Consulting for gold and copper and is summarised below. The QAQC for sampling associated with 2021 and 2022 drillhole programs at Rover 1 was reviewed by Castile Resources and is summarised after the historic QAQC.

Cube Consulting independently assessed all available QAQC sample data for the drilling completed on the Rover 1 project between March 2008 to August 2015, focusing on gold and copper QAQC data <u>only</u>. The dataset was received on 31/01/2017 as an Access database and the QAQC information was supplied as Excel spreadsheets between 31/01/2017 and 09/02/2017.

The following summary is based on the issues found during the QAQC review:

- The combined CRM, blanks and duplicate samples represent an insertion rate of 6% (i.e. 1,506 samples);
- A total of 67 blank CRM was inserted into the sampling stream:
 - The pulp blanks (i.e. 48 samples) suggest a low risk of contamination during the analytical stages of the assaying process for both gold and copper;
 - The whole rock granite samples suggest a low risk of contamination during the sample preparation stage for gold, but the consistent reporting of ~60 ppm Cu indicates the granite contains a minor amount of copper and it is not suitable for a copper blank;
 - It is recommended that certified coarse blanks are used in the future to monitor contamination during the sample preparation and analytical stages.
- A total of 705 gold and 61 copper CRM's were inserted into the sampling stream between 2008 and 2015. The inclusion of the CRM represents an insertion rate of 3%, which is slightly lower the industry standard of 5%.
- The analysis of the CRM's accuracy, precision and control charts is within acceptable limits and a low risk is associated with the accuracy and precision of the assay results;
- Approximately 5% of the CRM's were misclassified because of sample swapping and/or data transcription errors.
- Limited field duplicates, coarse reject duplicates or pulp duplicates have been submitted during for the Rover 1 dataset.
- No umpire laboratory duplicate sampling is presented in the dataset;
- No field duplicates or coarse reject samples were present in the dataset;
- The laboratory repeats for both gold and copper relative paired difference plots and average coefficient of variation are within acceptable limits;
- A total of 145 pulp duplicates were re-assayed using BLEG assaying methodology. The purpose of this is unclear. The BLEG duplicates will not give any meaningful conclusions with respect to the precision associated with the nature of the mineralisation, sample collection, sample preparation, sample size and assay methodology.

The following recommendations to address identified issues are summarised below:

- Sample weights should be recorded prior to leaving site and on receipt at the laboratory to improve the "sample chain of custody" and reduce potential sample handling errors;
- Incorporate coarse reject and field duplicate sampling as part of the routine QC procedures to monitor the accuracy and precision of the sample preparation, sampling error, analytical methods and natural variability (i.e. nugget effect) of the mineralisation. An insertion rate of 5% - 10% is considered industry best practice;
- Perform a retrospective field duplicate sampling campaign based on the coarse rejects stored onsite;
- Umpire laboratory duplicates are essential in determining any assay bias at the primary laboratory. It is recommended that 5% of mineralised samples are submitted to an alternative laboratory for check assay.

• Wet screening of the pulp should be conducted and grind size monitored on a routine basis.

The QAQC review demonstrates that the analytical accuracy and precision is acceptable and this indicates the sample data is appropriate for the purpose of Mineral Resource estimation.

Castile Resources reviewed available QAQC sample data for the drilling completed on the Rover 1 project between March 2021 to November 2021, focusing on gold and copper QAQC data <u>only</u>. QAQC reports were routinely prepared at the conclusion of drill programs once all results were returned, then reviewed as part of drill program completion reports.

The following summary is based on the individual drill program QAQC reports:

- The combined CRM, blanks and duplicate samples represent an insertion rate of 1:13 samples;
- A total of 205 blanks and CRM were inserted into the sampling stream:
 - The blanks (68 samples) suggest a low risk of contamination during the sample preparation stages of the assaying process for both gold and copper;
 - The bunbury basalt certified samples (68 samples) suggest a low risk of contamination during the sample preparation stage for gold, but the consistent reporting of between 50 and 160ppm Cu indicates the material contains a minor amount of copper and it is not suitable as a copper blank;
- A total of 106 gold and 34 copper CRM's were inserted into the sampling stream. The inclusion of the CRM represents an insertion rate of 1:13 which is better the industry standard of 1: 20.
 - The analysis of the CRM's accuracy, precision and control charts is within acceptable limits and a low risk is associated with the accuracy and precision of the assay results;
 - A small number of CRM's were misclassified because of sample swapping and/or data transcription errors.
- Limited field duplicates, coarse reject duplicates or pulp duplicates have been submitted during for the Rover 1 dataset.
 - No field duplicates or coarse reject samples were present in the dataset;
 - The laboratory repeats for both gold and copper relative paired difference plots and average coefficient of variation are within acceptable limits;
 - A total of 22 pulps were re-assayed at an umpire laboratory to verify gold results were representative. Results were repeatable.

The following is recommended to improve QAQC:

- Perform a retrospective field duplicate sampling campaign based on the coarse rejects stored onsite;
- Continue umpire laboratory duplicates of pulps to identify any assay bias at the primary laboratory

The QAQC review demonstrates that the analytical accuracy and precision is acceptable, indicating the sample data is appropriate for the purpose of Mineral Resource estimation.

Database

Database checks were performed prior to the estimation process and included:

- Checking for duplicate drill hole names and duplicate coordinates in the collar table.
- Checking for missing drill holes in the collar, survey, assay and geology tables based on drill hole names.
- Checking for survey inconsistencies including dips and azimuths <0°, dips >90°, azimuths >360°, negative depth values.
- Checking for inconsistencies in the "From" and "To" fields of the assay and geology tables. The inconsistency checks included the identification of negative values, overlapping intervals, duplicate intervals, gaps and intervals where the "From" value is greater than "To" value.

Database checks were conducted within Microsoft Access and Surpac Mining Software.

The database was extracted on the 21st of November 2021 and the information used in the estimation process is coded with the "Validated_Code" (ResInValid = ignored, Valid = used in estimation process) field in the collar table.

A total of 238 diamond drill holes have been drilled within the Rover 1 mineralised area of which 208 drill holes were used in the estimation process:

- 166 Westgold / Metals X / Castile Resources.
- 19 Adelaide Resources diamond holes.
- 23 Historic GeoPeko drill holes

Regolith Surfaces

Due to the depth of the Rover 1 mineralisation, no oxidation surfaces have been generated for use in the modelling process. All material is fresh.

Geology

The Rover 1 deposit occurs in a low relief area covered by extensive transported cover lying over approximately 110 metres of flat-lying Cambrian sediments of the Wiso Basin. The basin rocks unconformably overly a Proterozoic basement of the Warramunga Formation which hosts the deposit in the Rover 1 area, consequently, the deposit does not outcrop. Recent dating by the Northern Territory Geological Survey indicates the host rocks are part of the Ooradidgee Group.

The deposit is situated within a sequence of variably altered volcano-sedimentary rocks consisting of interbedded shales, siltstones tuffaceous sandstones and crystal tuff. Alteration grades from distal silica and silica-hematite (historically known as hematitic shales) to proximal Jasper, quartz-magnetite and magnetite ironstone. Strong late stage chlorite alteration is associated with the ironstone margins and 'root zone'. The sediment package has been metamorphosed to Lower Greenschist Facies.

Rover 1 consists of three mineralised areas: Jupiter, Jupiter West and Jupiter Deeps. Structural investigations indicate the ironstones are associated with antiformal structures. Economic mineralisation is observed to be associated with steep axial planar shear zones interacting with geology to generate brittle fracturing through competency contrast. These brecciated zones have focused mineralising fluids, resulting in deposition of sulphide phases as crack seal.

Estimation Domains

Due to the multi-element nature of the Rover 1 mineralisation, the interpretation and construction of the estimation domains was informed by:

- Lithological and structural interpretation;
- Global statistical analysis to determine mineral associations;

Geological Interpretation

The geological interpretation on a sectional basis formed the framework of the estimation domains and was performed on 20m spaced Easting sections. The geological interpretation focused on defining the extents of the ironstone alteration and the feeder zones (i.e. interpreted axial planner shears) focusing mineralisation into the system.

The sectional interpretation was conducted for all zones, resulting in a broad alteration halo and distinct ironstone types: Jasper/hematite ironstone, quartz-magnetite ironstone and magnetite ironstone. These zones were used to control density and magnetite interpolation in the block model, as well as constraining the extents of copper and gold mineralisation interpretations.

Figure 5: Example sectional interpretation of the Rover 1 mineralised area. (a) Jupiter mineralised area; and, (b) Western Lode mineralised area.

Global Statistical Analysis

Multivariate statistics were conducted on the samples inside the halo domain to justify which domains would be used for the Ag, Bi and Co estimate.

Table	4: Multivariant	Correlation	Matrix fron	n Cube	(2022)
Table		Conclation	IVIALITA ILOIT	I CUDC	(2022)

	Au	Cu	Со	Ag	Bi
Au	1	0.063	0.031	0.127	0.199
Cu		1	0.369	0.135	0.154
Со			1	0.1	0.101
Ag				1	0.086
	N(Au)	N(Cu)	N(Co)	N(Ag)	N(Bi)
N(Au)	1	0.656	0.675	0.711	0.724
N(Cu)		1	0.552	0.568	0.154
N(Co)			1	0.572	0.469
N(Ag)				1	0.449

The above Table 4 shows that Au and Cu have a weak correlation (0.063). These elements were modelled with independent domains. Cu and Co have a moderately positive correlation (0.369) and it is deemed acceptable to estimate both elements within the same set of domains. Ag and Bi both have a weak correlation with Au and Cu; however, when a normal score transformation is applied to suppress the scale effect, those elements proved to have a strong correlation with Au (0.711 and 0.724 respectively) The normal score correlation justifies using the gold domains for the estimation of Ag and Bi.

Selection Criteria

Estimation domains were constructed for gold and copper. The broad orientation of the estimation domains was governed by the lithological interpretation and structural settings.

The domaining selection criteria for gold mineralisation was based on:

- >0.50 ppm gold assay results;
- Orientation defined in the sectional lithological interpretation and structural orientations
- In some instances material below the cut-off was incorporated into the interpretation to maintain geological continuity.

The domaining selection criteria for copper mineralisation was based on:

- >5000 ppm copper assay results;
- Orientation defined in the sectional lithological interpretation, structural orientations and gold estimation domains;
- In some instances material below the cut-off was incorporated into the interpretation to maintain geological continuity.

The domaining selection criteria for magnetite, ironstone and density was based on:

- Geological interpretation;
- Logged hematite and magnetite;

The interpretation of the estimation domains was initially conducted for the gold estimation domains. The gold estimation domains were used to assist with defined the orientation of the copper domains, under the assumption the gold and copper mineralisation are associated with the same controls, though temporally discrete.

The gold estimation domains were used in the estimation of silver and bismuth. Copper estimation domains were used in the estimation of Cobalt.

Figure 6: Interpreted gold and copper estimation domains and interpreted ironstones.

Geostatistical Analysis and Estimation Methodology

Statistical analysis and estimation parameter development and interpolation was undertaken by Cube Consulting under the direction of Castile Resources. The following is a summary of the resource technical note which is provided as an appendices.

Spatial Continuity

The spatial continuity analysis of estimation domains was performed using Supervisor and Isatis on samples composited to 1m. All estimation domains displayed a skewed distribution and normal scores transformations were used to obtain interpretable experimental estimation domains. Exploratory data analysis (EDA) was performed on all estimation domains. Most domains have a limited number of samples (< 50) which made it difficult to interpret trends within the variogram maps. When possible, domains were grouped to compute and model a variogram.

Experimental variograms were generated using the 1m composite data and a number of estimations domains were assigned the variogram parameters of the larger domains based on the orientation of the domain and the distribution.

Estimation

The interpolation of Au, Cu, Co, Ag, Bi, SG and Magnetite was based on a number of different approaches depending on the characteristics of the estimation domain. The assigned estimation domains included:

- Au, Ag and Bi based on the interpreted gold estimation domains;
- Cu, Co based on the interpreted copper estimation domains;
- Density and magnetite based on interpreted ironstone lithologies and alteration.

A halo domain was based on ironstone and alteration domains was used to control the extrapolation of the background interpolation.

A number of estimation approaches were implemented for Au, Cu, Co, Ag and Bi depending on variable domain characteristics, which included the following permutations:

- Some of the larger non-halo domains were estimated using an Ordinary Kriging ("OK") indicator approach where samples displayed bi modal distributions. An indicator grade threshold was chosen, splitting the grade distribution into lower grade and higher-grade sub-domains. The indicator was estimated using OK, yielding a proportion of lower and higher-grade material for each block. The high and low grades were then estimated separately by OK, using the lower and higher-grade samples respectively. A final grade was calculated for each block by weighting the upper and lower grade estimates using the results of the indicator estimate. This method is able to "sharpen" the transition between lower and higher-grade areas within the domain, which would be smoother if a standard OK approach was used;
- All domains were estimated using OK based on the entire domain sample population;
- A number of domains were assigned the domain's declustered mean composite grade due to the small number of composites;
- A distance limiting top-cut approach was implemented for the halo domain to limit the spatial influence of outlier values, which have limited continuity.
- Some domains display orientation changes. These domains utilised dynamic kriging in Isatis, with trend surfaces developed to control the orientation of the search volume for block estimation
- Ordinary Kriging was used to estimate density inside the interpreted ironstone estimation domain using a local orientation to define the orientation of the modelled variogram and search neighbourhoods;
- Ordinary kriging was used to estimate density background values based on volumes representing alteration or ironstone lithology types. Outside of the alteration or ironstone volumes, a flat density of 2.75t/m3 was used.

The estimation approach implemented for magnetite depended on data density and included the following methodologies:

- Magnetite estimation domains were constructed such as:
 - $\circ~\cdot$ 1100: iron domains ISM-ISQ-ISH grouped in the Jupiter area
 - $\circ~\cdot$ 1300: iron domains ISM and ISQ-ISH grouped in the Western area
 - $\circ~\cdot$ 1400: iron domains ISM and ISQ-ISH grouped in the Jupiter Deeps area
 - • 4: Chlorite alteration halo_
- The chlorite alteration halo was estimated using hard boundaries with the other iron domains. The halo was not separated by area (Jupiter, Deeps and Western).
- To increase the quantity of data and improve the quality of the variograms, a linear regressed value for magnetite percentage was calculated using density and Fe % data.
- Within the three ironstone alteration domains (ISM, ISQ and ISH), only <u>measured</u> magnetite percentage values were used for the estimate (ie scanned core data). For the chlorite alteration domain, a mix of measured magnetite percentage and the regressed magnetite value was used.

Additional points of note:

- The mineralisation constraint wireframes are:
 - Au: ore_mga_au_all_zones.dtm
 - Cu: ore_mga_Cu_all_zones.dtm
 - Ironstones: ISH_Grouping.dtm, ISQ_Grouping.dtm, ISM_Grouping.dtm
 - Halo: ALT_Grouping.dtm
- SG values have been estimated as outlined above.
- The block model starts 95m below surface. No topography file was used in the estimation process. No historic mining is present.
- Modelling worksheets detailing geostatistics, variography and model validation are available for review on request.

Block Model

The attributes for estimation are:

- ag_ok Final silver estimate OK.
- au_ok Final gold estimate OK.
- bi_ok Final bismuth estimate OK.
- co_ok Final cobalt estimate OK.
- cu_ok Final copper estimate OK.
- magn_ok Final magnetite estimate OK.
- res_cat
 Resource classification
- sg Density
- oxidation Oxidation state
- au_ag_bi_estdom Estimation domains for gold, silver and bismuth.
- cu_co_estdom Estimation domains for copper and cobalt.
- ironst Estimation domains for density and magnetite.

Block Model Origin:

	v	v	7
	^	T	L
Min	358780	7787500	-1000
Max	359800	7788200	200
Extent	1020	700	1200
Discretisation	5.00	5.00	5.00
Parent	15.00	5.00	15.00
Sub-block	1.875	1.25	1.875

Block model Attributes for the Resource Model (rover1_dec2021_cube_final_v220203 rescat .mdl):

Attribute Name	Туре	Decimals	Background	Description
ag_ok	Float	3	-99	ag estimate
ag_ok_ke	Float	3	-99	ag estimate kriging efficiency
ag_ok_kvar	Float	3	-99	ag estimate kriging variance
ag_ok_meandist	Float	3	-99	ag estimate mean distance with samples
ag_ok_nos	Float	3	-99	ag estimate number of samples
ag_ok_pass	Integer	-	4	ag estimate pass number
ag_ok_slope	Float	3	-99	ag estimate Isope of regression
ag_ok_wtsk	Float	3	-99	ag estimate weight simple kriging mean
area	Character	-	BLANK	JUP, JUPW, JUPD, GANY
au_ag_bi_estdom	Integer	-	-99	Gold, silver & bismuth estimation domains
				calculated au equivalent value (2019
au_equivalent	Float	3	-99	Formula)
au_ok	Float	3	-99	au estimate
au_ok_ke	Float	3	-99	au estimate kriging efficiency
au_ok_kvar	Float	3	-99	au estimate kriging variance
au_ok_meandist	Float	3	-99	au estimate mean distance with samples
au_ok_nos	Float	3	-99	au estimate number of samples
au_ok_pass	Float	3	-99	au estimate pass number
au_ok_slope	Float	3	-99	au estimate Isope of regression
au_ok_wtsk	Float	3	-99	au estimate weight simple kriging mean
aueq1	Float	3	-99	calculated au equivalent value (2022 Au+Cu)
				calculated au equivalent value (2022
aueq2	Float	3	-99	Au+Cu+Co)
bi_ok	Float	3	-99	bi estimate
bi_ok_ke	Float	3	-99	bi estimate kriging efficiency
bi_ok_kvar	Float	3	-99	bi estimate kriging variance
bi_ok_meandist	Float	3	-99	bi estimate mean distance with samples
bi_ok_nos	Float	3	-99	bi estimate number of samples
bi_ok_pass	Integer	-	4	bi estimate pass number
bi_ok_slope	Float	3	-99	bi estimate Isope of regression
bi_ok_wtsk	Float	3	-99	bi estimate weight simple kriging mean
co_ok	Float	3	-99	co estimate
co_ok_ke	Float	3	-99	co estimate kriging efficiency

Attribute Name	Туре	Decimals	Backgro	und	Description
co_ok_kvar	Float	3		-99	co estimate kriging variance
co_ok_meandist	Float	3		-99	au estimate mean distance with samples
co_ok_nos	Float	3		-99	co estimate number of samples
co_ok_pass	Integer	-		4	co estimate pass number
co_ok_slope	Float	3		-99	co estimate Isope of regression
co_ok_wtsk	Float	3		-99	co estimate weight simple kriging mean
cu_co_estdom	Integer	-		-99	Copper Coblat estimation domains
cu_ok	Float	3		-99	cu estimate
cu_ok_ke	Float	3		-99	cu estimate kriging efficiency
cu_ok_kvar	Float	3		-99	cu estimate kriging variance
cu_ok_meandist	Float	3		-99	cu estimate mean distance with samples
cu_ok_nos	Float	3		-99	cu estimate number of samples
cu_ok_pass	Integer	-		4	cu estimate pass number
cu_ok_slope	Float	3		-99	cu estimate Isope of regression
cu_ok_wtsk	Float	3		-99	cu estimate weight simple kriging mean
Cueq1	Float	3		-99	calculated Cu equivalent value (2022 Cu+Au)
					calculated au equivalent value (2022
Cueq2	Float	3		-99	Cu+Au+Co)
ironst	Integer	-		0	0=not ironstone; 1=ISM, 2=ISQ, 3=ISH, 4=ALT
					ironst (1, 2 3) and are: jup = 1100, deeps =
ironst_area	Integer	-		0	1400, wz = 1300 and ALT = 4 no area
magn_ok	Float	3		-99	magnetite estimate
magn_ok_ke	Float	3	-99		magnetite estimate kriging eff
magn_ok_kvar	Float	3	-99		magnetite estimate kriging var
					magnetite estimate mean distance with
magn_ok_meandist	Float	2	-99		samples
magn_ok_nos	Integer	-	0		magnetite estimate number of samples
magn_ok_pass	Integer	-	4		magnetite estimate search pass number
magn_ok_slope	Float	3	-99		magnetite estimate slope of regression
magn_ok_wtsk	Float	3	-99		magnetite estimate wt simple krigong mean
					0=depleted; 1=measured; 2=indicated;
ree est	latorox		00		3=inferred; 4=unreported; 5=sterilised;
	integer	-	99		0=depleted: 1=measured: 2-indicated:
					3=inferred: 4=unreported: 5=sterilised:
res_cat_cst	Integer	-		99	99=background
sg	Float	3		-99	density estimated
tenement	Character	-	BLANK		out (blank) or inside (EL24/541 or EL24/989)

Block Model Results

The following block model report for gold was based on the following: >= 2.0 AuEq1

		2.0g/t		Measured			Indicated			Inferred			Total	
Image Image <th< th=""><th></th><th>COG</th><th>Tonnes</th><th>Au g/t</th><th>Au Oz</th><th>Tonnes</th><th>Au g/t</th><th>Au Oz</th><th>Tonnes</th><th>Au g/t</th><th>Au Oz</th><th>Tonnes</th><th>Au g/t</th><th>Au Oz</th></th<>		COG	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz	Tonnes	Au g/t	Au Oz
Internet														
Image Image <t< td=""><td></td><td>1101</td><td></td><td></td><td></td><td>83,718</td><td>7.17</td><td>19,285</td><td>-</td><td>-</td><td>-</td><td>83,718</td><td>7.17</td><td>19,285</td></t<>		1101				83,718	7.17	19,285	-	-	-	83,718	7.17	19,285
Image Image <th< td=""><td></td><td>1102</td><td></td><td></td><td></td><td>51 853</td><td>5.79</td><td>8 170</td><td>4 779</td><td>2.01</td><td>-</td><td>70,923</td><td>5.79</td><td>8 642</td></th<>		1102				51 853	5.79	8 170	4 779	2.01	-	70,923	5.79	8 642
Image Image <th< td=""><td></td><td>1105</td><td></td><td></td><td></td><td>6 309</td><td>2.42</td><td>491</td><td>6 840</td><td>2 4 2</td><td>403</td><td>13 149</td><td>4.73</td><td>1 023</td></th<>		1105				6 309	2.42	491	6 840	2 4 2	403	13 149	4.73	1 023
IDD IDD <thidd< th=""> <thidd< th=""> <thidd< th=""></thidd<></thidd<></thidd<>		1104				-		- 451	38,316	0.95	1.170	38,316	0.95	1,025
1200 1000 1000 1000 1000 1000 <t< td=""><td></td><td>1105</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>13,999</td><td>1.21</td><td>544</td><td>13,999</td><td>1.21</td><td>544</td></t<>		1105				-	-	-	13,999	1.21	544	13,999	1.21	544
1200 1000 1200 100 1200 100 1200 100 1200 100 1300 100 1200 100 1300 100		1201				58.688	3.78	7.136			-	58,688	3.78	7.136
Image Image <th< td=""><td></td><td>1202</td><td></td><td></td><td></td><td>11,617</td><td>3.68</td><td>1,373</td><td>2,331</td><td>3.76</td><td>282</td><td>13,948</td><td>3.69</td><td>1,655</td></th<>		1202				11,617	3.68	1,373	2,331	3.76	282	13,948	3.69	1,655
1206 1205 1207 1205 1207 1205 1207 1207 1207 1207 <t< td=""><td></td><td>1203</td><td></td><td></td><td></td><td>69,669</td><td>3.97</td><td>8,886</td><td>-</td><td>-</td><td>-</td><td>69,669</td><td>3.97</td><td>8,886</td></t<>		1203				69,669	3.97	8,886	-	-	-	69,669	3.97	8,886
1200 1000 1200 100		1204				198,922	6.19	39,601	-	-	-	198,922	6.19	39,601
Image Image <th< td=""><td></td><td>1205</td><td></td><td></td><td></td><td>34,824</td><td>5.80</td><td>6,489</td><td>-</td><td>-</td><td>-</td><td>34,824</td><td>5.80</td><td>6,489</td></th<>		1205				34,824	5.80	6,489	-	-	-	34,824	5.80	6,489
1207 1208 1207 1208 1207 1208 1207 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 1208 1200 1208 1200 <t< td=""><td></td><td>1206</td><td></td><td></td><td></td><td>127,596</td><td>6.18</td><td>25,340</td><td>181</td><td>5.13</td><td>30</td><td>127,777</td><td>6.18</td><td>25,370</td></t<>		1206				127,596	6.18	25,340	181	5.13	30	127,777	6.18	25,370
1208 6.5.4 5.12 1.12 3.5.2 4.80 5.41 1.0666 5.63 1.73 1200 1.900 1.930 1.5202 1.520 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 1.521 </td <td></td> <td>1207</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>22,607</td> <td>7.16</td> <td>5,200</td> <td>22,607</td> <td>7.16</td> <td>5,200</td>		1207				-	-	-	22,607	7.16	5,200	22,607	7.16	5,200
9 1200 - 6,00 1,00 1,20<		1208				6,814	5.12	1,121	3,852	4.96	614	10,666	5.06	1,735
9000 1200 1.90 1.93 8.9 96.03 2.88 3.843 3.003 2.21 2.7 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 827 0.005 2.27 0.00 0.005 2.27 0.00 0.005 <	sui	1209				6,016	1.66	321	15,202	1.81	886	21,218	1.77	1,207
B 1211 - - - - 0 0.005 2.57 6.27 0.005 2.57 0.27 10.005 2.57 0.27 10.005 2.57 0.27 10.005 2.57 0.27 10.005 2.57 1.57 <td>ma</td> <td>1210</td> <td></td> <td></td> <td></td> <td>1,910</td> <td>1.38</td> <td>85</td> <td>36,123</td> <td>2.88</td> <td>3,348</td> <td>38,033</td> <td>2.81</td> <td>3,433</td>	ma	1210				1,910	1.38	85	36,123	2.88	3,348	38,033	2.81	3,433
B 122 - - - - - - 2.842 1.00 2.97 2.862 1.100 2.97 3301 - - 1.02 1.900 2.97 - 332.02 1.02 1.900 1.910 1.900 1.910 1.900 3303 - - 66.44 1.650 2.57 2.0 2.0 - - 66.44 1.902 1.910 3304 - - - 1.900 0.910 0.914 1.902 1.903 4.22 1.903 4.22 1.903 4.22 1.903 4.42 1.903 1.911 1.903 1.903 4.42 1.903 1.911 1.903 1.911 1.903 1.911 1.903 1.911 1.903 1.911 1.911 1.913 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 1.911 </td <td>õ</td> <td>1211</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>10,005</td> <td>2.57</td> <td>827</td> <td>10,005</td> <td>2.57</td> <td>827</td>	õ	1211				-	-	-	10,005	2.57	827	10,005	2.57	827
C 123 ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·< ·<	plo	1212				-	-	-	2,682	3.10	267	2,682	3.10	267
1900 3.2.2.0 1.20 0.70 8.3.2.0 2.00 2.00 7.00 0.00 8.3.2.0 2.00 7.00 0.00 8.3.2.0 2.00 7.00 0.00	0	1213				-	-	-	-	-	-	-	-	-
1302 1304 1305 1304 1304 1304 1304 1304 1304 1304 1305 1304 1305 1307 1308 1308 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1306 1308 <t< td=""><td></td><td>1301</td><td></td><td></td><td></td><td>33,226</td><td>1.02</td><td>1,090</td><td>-</td><td>-</td><td>-</td><td>33,226</td><td>1.02</td><td>1,090</td></t<>		1301				33,226	1.02	1,090	-	-	-	33,226	1.02	1,090
1200 1000 <t< td=""><td></td><td>1302</td><td></td><td></td><td></td><td>69 444</td><td>2.87</td><td>15 217</td><td>20</td><td>0.77</td><td>0</td><td>68 441</td><td>2.87</td><td>15 217</td></t<>		1302				69 444	2.87	15 217	20	0.77	0	68 441	2.87	15 217
Image: state		1303				107 525	0.90	14 025		-	-	107 525	4.22	14 925
Image: second		1304					4.52			-			4.52	14,523
Image Image <th< td=""><td></td><td>1305</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>30.804</td><td>1.96</td><td>1.941</td><td>30.804</td><td>1.96</td><td>1.941</td></th<>		1305				-	-	-	30.804	1.96	1.941	30.804	1.96	1.941
1986 0 0 2705 222 196 0 0 0 2705 222 195 1401 0 380,153 4.35 54,13 0		1307				-		-	1.896	0.74	45	1.896	0.74	45
1900 1900 <t< td=""><td></td><td>1308</td><td></td><td></td><td></td><td>2,745</td><td>2.22</td><td>196</td><td></td><td>-</td><td>-</td><td>2,745</td><td>2.22</td><td>196</td></t<>		1308				2,745	2.22	196		-	-	2,745	2.22	196
1402 1 <th1< th=""> 1 1 1</th1<>		1401				389,153	4.35	54,413	-			389,153	4.35	54,413
1403 1403 1404 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1405 1406 1405 <th< td=""><td></td><td>1402</td><td></td><td></td><td></td><td>63</td><td>1.00</td><td>2</td><td></td><td>-</td><td>-</td><td>63</td><td>1.00</td><td>2</td></th<>		1402				63	1.00	2		-	-	63	1.00	2
1406 1406 100 </td <td></td> <td>1403</td> <td></td> <td></td> <td></td> <td>12,063</td> <td>0.94</td> <td>363</td> <td>2,948</td> <td>0.94</td> <td>89</td> <td>15,011</td> <td>0.94</td> <td>452</td>		1403				12,063	0.94	363	2,948	0.94	89	15,011	0.94	452
1406 1		1404				4,048	0.96	125	-	-	-	4,048	0.96	125
1406 1 <th1< th=""> 1 1 1</th1<>		1405				-	-	-	-	-	-	-	-	-
NUM Num <td></td> <td>1406</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>		1406				-	-	-	-	-	-	-	-	-
1101 1 60.604 0.09 175 60.604 0.09 175 1103 2.4945 0.011 100 2.4956 0.11 100 1103														
1102 1		1101				60,604	0.09	175	-	-	-	60,604	0.09	175
103 1		1102				2,945	0.11	10	-	-	-	2,945	0.11	10
1104 1		1103				-	-	-	•	-	-	-	-	-
ILIG Image Image <thi< td=""><td></td><td>1104</td><td></td><td></td><td></td><td>83,017</td><td>0.17</td><td>454</td><td>-</td><td>-</td><td>-</td><td>83,017</td><td>0.17</td><td>454</td></thi<>		1104				83,017	0.17	454	-	-	-	83,017	0.17	454
Inco Image Image Image Image Image Image Image 1007 Image		1105				96,191	0.31	956			-	96,191	0.31	956
Intro Intre Intro Intro <th< td=""><td></td><td>1105</td><td></td><td></td><td></td><td>140,851</td><td>0.31</td><td>1,449</td><td>-</td><td>- 0.40</td><td>- 162</td><td>12 0 2 7</td><td>0.31</td><td>1,449</td></th<>		1105				140,851	0.31	1,449	-	- 0.40	- 162	12 0 2 7	0.31	1,449
Inco Inco <thinco< th=""> Inco Inco <thi< td=""><td></td><td>1107</td><td></td><td></td><td></td><td></td><td></td><td></td><td>2 854</td><td>0.40</td><td>105</td><td>2 854</td><td>0.40</td><td>105</td></thi<></thinco<>		1107							2 854	0.40	105	2 854	0.40	105
Image: Note of the image in the image. It is not the image in the image in the image in the image in the image. It is not the image in the image in the image in the image in the image. It is not the image in the image. It is not the image in the image in the image in the image. It is not the image in the image in the image. It is not the image in the image in the image in the image. It is not the image in the image in the image in the image in the image. It is not the image in the image in the image in the image. It is not the image in the image in the image. It is the image in the image in the image. It is not th		1100							150 845	0.15	863	150 845	0.15	863
Image: Note of the image		11105							-	-		150,045	-	-
Nome 1112 1 </td <td></td> <td>1111</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>12.397</td> <td>0.10</td> <td>39</td> <td>12.397</td> <td>0.10</td> <td>39</td>		1111				-	-	-	12.397	0.10	39	12.397	0.10	39
Intra Intra< Intra Intra< Intra Intra< Intra Intra< Intrer< Intr< Intr< <		1112				-	-	-	2,102	0.27	18	2,102	0.27	18
Initial Initial <t< td=""><td></td><td>1113</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>12,674</td><td>0.57</td><td>231</td><td>12,674</td><td>0.57</td><td>231</td></t<>		1113				-	-	-	12,674	0.57	231	12,674	0.57	231
Image: bit		1114				-	-	-	-	-	-	-	-	-
Image: biase in the section of the section		1201				14,524	0.19	87	-	-	-	14,524	0.19	87
No No<		1202				63,482	0.22	445	-	-	-	63,482	0.22	445
No 1		1203				4,895	0.54	85	-	-	-	4,895	0.54	85
No 1205		1204				-	-	-	-	-	-		-	-
Image: bis state in the image:	su	1205				45,208	0.22	318	-	-	-	45,208	0.22	318
No 1207	mai	1206				163,388	0.36	1,886	-	-	-	163,388	0.36	1,886
Book 1400 // 1333 - - - 1400 // 1333 - - 1400 // 1333 1,333 - - 1400 // 13680 0.32 1,333 1,333 1,333 - - - 1400 // 13680 0.33 1,193 - - - - 1400 // 13680 0.33 1,199 - - - - 1400 // 13680 0.33 1,199 - - - - - - - - - - - 1400 // 13680 0.33 1,199 - <th< td=""><td>°Q.</td><td>1207</td><td></td><td></td><td></td><td>45,384</td><td>0.19</td><td>280</td><td>-</td><td>-</td><td>-</td><td>45,384</td><td>0.19</td><td>280</td></th<>	°Q.	1207				45,384	0.19	280	-	-	-	45,384	0.19	280
B 1209 113,680 0.33 1,199 113,680 0.33 1,199 1210	per	1208				130,770	0.32	1,333	-	-	-	130,770	0.32	1,333
12.00 - - - 19.312 0.13 19.312 0.13 19.312 0.13 19.312 0.13 19.312 0.13 19.312 0.13 19.312 0.143 19.312 0.143 19.312 0.143 19.312 0.143 19.312 0.145 5101 99.582 0.016 5011 1212 - - - - 285,970 0.26 2,345 285,970 0.26 2,345 1301 - - 6,155 0.23 466 - - 6,155 0.23 466 1303 - 42,824 0.28 381 - - 42,824 0.28 381 1304 - - 410 - - 42,824 0.28 381 1305 - 91,736 0.10 301 - - 111,4350 0.12 449 1306 - 114,350 0.12 449 - - <t< td=""><td>Cop</td><td>1209</td><td></td><td></td><td></td><td>113,680</td><td>0.33</td><td>1,199</td><td>10 51 2</td><td>-</td><td>-</td><td>10 510</td><td>0.33</td><td>1,199</td></t<>	Cop	1209				113,680	0.33	1,199	10 51 2	-	-	10 510	0.33	1,199
International and the set of the		1210				-	-	-	13,512	0.23	501	98 582	0.23	501
Interpretation Interpr		1211				-		-	285 970	0.10	2 345	285 970	0.10	2 345
1302 1303 1304 1305 1305 1305 1305 1305 1305 1305 1305 1305 1305 1307 1305 1305 1307 1305 114,350 0.12 449 - - - 114,350 0.12 449 1307 - <td></td> <td>1301</td> <td></td> <td></td> <td></td> <td>255.272</td> <td>0.13</td> <td>1.034</td> <td></td> <td>-</td> <td></td> <td>255.272</td> <td>0.13</td> <td>1.034</td>		1301				255.272	0.13	1.034		-		255.272	0.13	1.034
1303 1.2.82 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 1.2.824 0.2.8 38.1 0.1.2 449 1.1.14,350 0.1.2 449 1.2.844 1.0.8 0.1.2 449 1307		1302				6.155	0.23	46		-		6.155	0.23	46
1304 106,240 0.12 410 106,240 0.12 410 1305 91,736 0.10 301 91,736 0.10 301 1306 91,736 0.10 301 91,736 0.10 301 1306 114,350 0.12 449 14,350 0.12 449 1307 6,667 0.05 10 6,667 0.05 10 6,667 0.05 10 14,350 0.12 449 1308 23,880 0.06 48 23,880 0.06 48 1401 64,4555 0.22 4,601 1 52,22 4,601 1402 23,80		1303				42,824	0.28	381	-			42,824	0.28	381
1305 91,736 0.10 91,736 0.10 301 91,736 0.10 301 1306 114,350 0.12 449 114,350 0.12 449 1307 6,467 0.05 10 6,467 0.05 10 1308		1304				106,240	0.12	410	-	-	-	106,240	0.12	410
1306 114,350 0.12 449 114,350 0.12 449 1307 6,467 0.05 10 6,467 0.05 10 1308		1305				91,736	0.10	301	-	-	-	91,736	0.10	301
1307 6,467 0.05 10 6,467 0.05 10 1308		1306				114,350	0.12	449	-	-	-	114,350	0.12	449
1308 <td></td> <td>1307</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>6,467</td> <td>0.05</td> <td>10</td> <td>6,467</td> <td>0.05</td> <td>10</td>		1307				-	-	-	6,467	0.05	10	6,467	0.05	10
1309 23,880 0.06 4.8 23,880 0.06 4.8 1401 23,880 0.06 4.8 23,880 0.06 4.8 1401 644,655 0.22 4,601 644,656 0.22 4,601 1402 68,020 0.15 326 1403 <		1308				-	-	-	-	-	-	-	-	-
1401 ··· ··· 644,655 0.22 4,601 ··· ··· 644,655 0.22 4,601 1402 ··· ··· 68,020 0.15 326 ··· ··· 684,655 0.22 4,601 1402 ··· ··· 68,020 0.15 326 ··· ··· 68,020 0.15 326 1404 ··· ··· 129,546 0.16 671 ··· ··· 129,546 0.16 671 1404 ··· ··· ··· ··· ··· 27,003 0.06 54 27,003 0.06 54 1405 ··· ··· ··· ··· ··· ··· ··· 24,616 0.16 518 1406 ··· ·		1309				-	-	-	23,880	0.06	48	23,880	0.06	48
1402 1402 68,020 0.15 326 68,020 0.15 326 1403 129,546 0.16 129,546 0.16 107 129,546 0.16 671 1404 1 129,546 0.16 127,003 0.06 54 27,003 0.06 54 1405 1 1 14,568 0.12 58 14,568 0.12 58 1406 1 1 1.01 1.02 1.02 58 14,568 0.12 58 1406 1 1.01 1.02 1.02 58 14,568 0.12 58 1407 1 1.02 1.03 764 0.36 9 764 0.36 9 HALO 1000 1 1.02 1.03 1.03 1.88 9 1.313 1.88 79 Total: - 1.04 1.04 1.04 1.04 1.04 1.04		1401				644,656	0.22	4,601	-	-	-	644,656	0.22	4,601
1403 ··· ··· 129,546 0.16 671 ··· ··· 129,546 0.16 671 1404 ··· ··· ··· ··· 27,003 0.06 54 27,003 0.06 54 1405 ··· ··· ··· 14,568 0.12 58 0.16 54 1406 ··· ··· ··· 14,568 0.12 58 0.16 128 1406 ··· ··· 14,568 0.12 ··· 24,616 0.16 128 1407 ··· ··· ··· ··· ··· 24,616 0.16 128 1407 ··· ··· ··· ··· ··· ··· 24,616 0.06 128 1407 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· ···		1402				68,020	0.15	326	-	-	-	68,020	0.15	326
1404 27,03 0.06 54 27,03 0.06 54 1405 - 14,568 0.12 58 14,568 0.12 58 1406 - 14,568 0.12 58 14,568 0.12 58 1407 - - 14,568 0.12 58 14,568 0.16 128 1407 - - - - 764 0.36 9 764 0.36 9 HALO 1000 - - - - - 1.88 70 764 0.36 9 Totai: -<		1403				129,546	0.16	671	-	-	-	129,546	0.16	671
14U5 - - - 14,568 0.12 58 14,568 0.12 58 1406 24,616 0.16 128 - - - 24,616 0.16 128 58 1407 - 24,616 0.16 128 - - - 24,616 0.16 128 1407 - - 764 0.36 9 764 0.36 9 HALO 1000 - - - - 764 1.88 79 Totai: - - 3,881,967 1.94 242,492 864,342 0.75 20,815 4,746,309 1.73 263,307		1404				-	-	-	27,003	0.06	54	27,003	0.06	54
L4UD 1407 - - - - 24,616 0.16 128 - - - 24,616 0.16 128 - - - 24,616 0.16 128 - - - - 24,616 0.16 128 - - - - - 24,616 0.16 128 - - - 764 0.36 9 764 0.36 9 764 0.36 9 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79 1,313 1.88 79		1405				-	-	-	14,568	0.12	58	14,568	0.12	58
HALO 1000 Total: 3,881,967 1.94 242,492 864,342 0.75 20,815 4,746,309 1.73 263,307		1406				24,616	0.16	128	-	-	-	24,616	0.16	128
HALO 1000 - - - 3,881,967 1.94 242,492 864,342 0.75 20,815 4,746,309 1.73 263,307		1407				-	-	-	764	0.36	9	764	0.36	9
Total: - - 3,881,967 1.94 242,492 864,342 0.75 20,815 4,746,309 1.73 263,307	HALO	1000							1.313	1.88	79	1.313	1.88	79
Total: 3,881,967 1.94 242,492 864,342 0.75 20,815 4,746,309 1.73 263,307		1000							_,515	1.00	. ,	2,515	1.00	.5
		Total:	-	-	-	3,881,967	1.94	242,492	864,342	0.75	20,815	4,746,309	1.73	263,307

The following block model report for Copper was based on the following: >= 2.0 AuEq1

	2.0g/t		Measured			Indicated			Inferred			Total	
	COG	Tonnes	Cu %	Cu T	Tonnes	Cu %	Cu T	Tonnes	Cu %	Cu T	Tonnes	Cu %	Cu T
	1101				83,718	1.07	894	-	•	-	83,718	1.07	894
	1102				70,923	1.65	1,173	-	-	-	70,923	1.65	1,173
	1103				51,853	1.47	/64	4,778	0.93	44	56,631	1.43	808
	1104				6,309	0.86	54	6,840	0.17	12	13,149	0.50	66
	1105				-	-	-	38,315	4.54	1,/38	38,316	4.54	1,/38
	1201				-	-	-	15,999	2.17	504	13,999	2.17	504
	1201				11 617	1 20	160	- 2 2 2 1	0.24	-	12 049	1.20	169
	1202				11,017	1.50	100	2,331	0.54	٥	13,948	1.20	100
	1205				108.022	0.52	1 442	-		-	109,009	0.52	1 442
	1204				24 924	0.72	202	-		-	24 924	0.72	202
	1205				127 596	0.04	310	181	1 15	2	127 777	0.04	312
	1200				-	-	-	22.607	0.42	95	22.607	0.42	95
	1207				6.814	1 14	78	3 852	0.12	4	10,666	0.72	82
Ś	1209				6.016	1.59	95	15,202	0.48	73	21,218	0.79	168
Jain	1210				1,910	1.59	30	36,123	0.59	213	38,033	0.64	243
Dom	1211				-	-	-	10,005	0.92	92	10,005	0.92	92
D PI	1212				-	-	-	2,682	0.13	4	2,682	0.13	4
ß	1213				-	-	-	-	-	-	-	-	-
	1301				33,226	1.88	625	-	-	-	33,226	1.88	625
	1302				81,500	0.98	800	20	0.80	0	81,520	0.98	800
	1303				68,441	1.31	897	-	-	-	68,441	1.31	897
	1304				107,535	1.11	1,198	-	-	-	107,535	1.11	1,198
	1305				-	-	-	-	-	-	-	-	-
	1306				-	-	-	30,804	0.29	91	30,804	0.29	91
	1307				-	-	-	1,896	0.78	15	1,896	0.78	15
	1308				2,745	1.61	44	-	-	-	2,745	1.61	44
	1401				389,153	2.44	9,482	-	-	-	389,153	2.44	9,482
	1402				63	1.67	1	-	-	-	63	1.67	1
	1403				12,063	1.96	236	2,948	1.52	45	15,011	1.87	281
	1404				4,048	1.99	81	-	-	-	4,048	1.99	81
	1405				-	-	-	-	-	-	-	-	-
	1406				-	-	-	-	-	-	-	-	-
	1101				60,604	1.32	800	-	-	-	60,604	1.32	800
	1102				2,945	1.17	35	-	-	-	2,945	1.17	35
	1103				-	-	-	-	•	-	-	-	-
	1104				83,017	1.20	995	-	-	-	83,017	1.20	995
	1105				96,191	1.39	1,337	-		-	96,191	1.39	1,337
	1106				146,831	2.69	3,945	-	-	- 140	146,831	2.69	3,945
	1107				-		-	2 954	1.15	240	2 95 4	1.15	240
	1100				-	-	-	150 8/15	2.47	3 7 2 7	150 845	2.47	3 7 7 7
	1110							150,045	2.47	5,727	150,045	2.47	3,727
	1110						_	12 397	1 28	159	12 397	1 28	159
	1112				-		-	2.102	1.09	23	2.102	1.09	23
	1113				-		-	12,674	1.04	132	12,674	1.04	132
	1114				-		-	-		-			
	1201				14,524	1.63	237	-	-	-	14,524	1.63	237
	1202				63,482	1.33	847	-	-	-	63,482	1.33	847
	1203				4,895	1.18	58	-	-	-	4,895	1.18	58
	1204				-	-	-	-	-	-	-	-	-
S	1205				45,208	1.24	560	-	-	-	45,208	1.24	560
nain	1206				163,388	1.27	2,077	-	-	-	163,388	1.27	2,077
Don	1207				45,384	1.29	585	-	-	-	45,384	1.29	585
Der	1208				130,770	1.48	1,933	-	-	-	130,770	1.48	1,933
1do	1209				113,680	1.24	1,406	-	-	-	113,680	1.24	1,406
0	1210				-	-	-	19,512	1.31	256	19,512	1.31	256
	1211				-	-	-	98,582	1.75	1,728	98,582	1.75	1,728
	1212				-	-	-	285,970	1.40	3,990	285,970	1.40	3,990
	1301				255,272	2.12	5,403	-	-	-	255,272	2.12	5,403
	1302				6,155	1.86	115	-	-	-	6,155	1.86	115
	1303				42,824	2.05	878	-	-	-	42,824	2.05	878
	1304				106,240	1.72	1,830	-	-	-	106,240	1.72	1,830
	1305				91,736	2.06	1,892	-	-	-	91,736	2.06	1,892
	1306	L			114,350	1.77	2,019	-	-	-	114,350	1.77	2,019
	1307				-	-	-	6,467	1.26	81	6,467	1.26	81
	1308				-	-	-	-	-	-	-	-	-
	1401				644 656	-	-	25,880	1.51	313	23,880	1.31	13 5 20
	1401				68 020	1 75	13,520	-	-	-	68 020	1.25	13,520
	1402				129 546	1.25	1 0/12	-	-	-	129 546	1.25	1 902
	1405					1.47	1,503	27 003	1 //5	300	27 003	1.47	1,503
	1404					-	-	14 569	1.40	390	14 568	1.45	254
	1405				24.616	1 36	- 335	-,508	1./4	- 2.54	24 616	1.74	335
	1400						-	764	0.99	- 8	764	0.99	8
	1407							,	5.55	5		5.55	5
HALO	1000				1			1,313	0.13	2	1,313	0.13	2
_													
	Total:	-	-	-	3.881.967	1.63	63,408	864.342	1.62	13.983	4.746.309	1.63	77,391

	2.0g/t		Measured			Indicated			Inferred			Total	
	COG	Tonnes	Co %	Co T	Tonnes	Co %	Co T	Tonnes	Co %	Co T	Tonnes	Co %	Co T
	1101				83,718	0.06	47	-	-	-	83,718	0.06	47
	1102				70,923	0.10	74	-	-	-	70,923	0.10	74
	1103				51,853	0.08	40	4,778	0.05	2	56,631	0.07	42
	1104				6,309	0.06	3	6,840	0.02	1	13,149	0.04	5
	1105				-	-	-	38,316	0.46	175	38,316	0.46	175
200 201 201 201 201 201 201 201	1106				-	-	-	13,999	0.18	25	13,999	0.18	25
	1201				58,688	0.05	32	-	-	-	58,688	0.05	32
	1202				11,617	0.11	13	2,331	0.02	1	13,948	0.10	14
	1203				69,669	0.06	43	-	-	-	69,669	0.06	43
	1204				198,922	0.04	88	-	-	-	198,922	0.04	88
	1205				34,824	0.07	25	-	-	-	34,824	0.07	25
	1206				127,596	0.02	28	181	0.04	0	127,777	0.02	28
	1207				-	-	-	22,607	0.04	9	22,607	0.04	9
	1208				6,814	0.07	5	3,852	0.09	4	10,666	0.08	8
s	1209				6,016	0.20	12	15,202	0.05	7	21,218	0.09	20
Jair	1210				1,910	0.23	4	36,123	0.05	19	38,033	0.06	24
lou	1211				-	-	-	10,005	0.11	11	10,005	0.11	11
P	1212				-	-	-	2,682	0.03	1	2,682	0.03	1
Ğ	1213				-	-	-	-	-	-	-	-	-
	1301				33,226	0.13	42	-	-	-	33,226	0.13	42
	1302				81,500	0.08	68	20	0.12	0	81,520	0.08	68
	1303				68,441	0.08	55	-	-	-	68,441	0.08	55
Series Series	1304				107,535	0.08	84	-	-	-	107,535	0.08	84
	1305					-	-	-	-	-	-	-	-
	1306				-		-	30,804	0.05	16	30,804	07 0.04 66 0.08 18 0.09 33 0.06 05 0.11 82 0.03 - 0 41 0.08 35 0.08 41 0.08 35 0.08 41 0.08 35 0.08 41 0.08 53 0.07 63 0.06 11 0.08 48 0.05 96 0.12 31 0.14 27 0.02 54 0.03 - - 97 0.09 02 0.05 - - 97 0.09 02 0.05 82 0.06 - -	16
	1307				-	-		1.896	0.15	3	1.896	0.15	3
	1308				2,745	0.06	2	-	-	-	2,745	0.06	2
	1213		389.153	0.07	282	-	-	-	389.153	0.07	282		
	1402				63	0.06	0	-	-	-	63	0.06 0.11 0.03 - 0.05 0.05 0.05 0.05 0.06 0.07 0.06 0.07 0.06 0.08 - - 0.04 0.08 - - 0.04 0.08 - - 0.04 0.08 - - - 0.04 0.08 0.08 0.08 0.07 0.05 0.07 - - - - - - - - - - - - - - - - - - -	0
	1403				12.063	0.10	12	2.948	0.02	0	15.011	0.08	13
	1404				4 048	0.05	2	-	-	-	4 048	0.05	20
	1/05				1,010	0.05		-	-		1,010	-	
	1405						-		-	-	_	_	_
	1400												
	1101				60 604	0.04	22	-		_	60 604	0.04	22
	1101				2.045	0.04	22	-			2.045	0.04	22
	1102				2,945	0.08	2	-	-	-	2,945	0.08	2
	1105				93.017	0.04		-	-	-	82.017	-	- 21
	1104				06 101	0.04	114	-	-	-	06 101	0.04	114
	1105				90,191	0.12	202	-	-	-	90,191	0.12	202
	1100				140,651	0.14	202	12 027	-	-	12 0 2 7	0.14	202
	1107				-	-	-	12,627	0.02	3	12,627	0.02	3
	1108				-		-	2,854	0.03	1	2,854	0.03	1
	1109				-	-	-	150,845	0.19	292	150,845	0.19	292
	1110				-	-	-	-	-	-	-	-	
	1111				•	-	-	12,397	0.09	11	12,397	0.09	11
	1112				•	-	-	2,102	0.05	1	2,102	0.05	1
	1113				-	-	-	12,674	0.07	9	12,674	0.07	9
	1114				-	-	-	-	-	-	-	-	
	1201				14,524	0.05	7	-	-	-	14,524	0.05	7
	1202				63,482	0.06	36	-	-	-	63,482	0.06	36
	1203				4,895	0.05	3	-	-	-	4,895	0.05	3
	1204				-	-	-	-	-	-	-	-	-
su	1205				45,208	0.02	11	-	-	-	45,208	0.02	11
mai	1206				163,388	0.08	131	-	-	-	163,388	41 0.08 35 0.08 - - 04 0.05 96 0.15 94 0.06 35 0.06 145 0.06 53 0.07 63 0.06 11 0.08 - - 04 0.04 48 0.05 - - 04 0.04 45 0.08 - - 04 0.04 45 0.08 - - 97 0.02 97 0.03 0.2 0.05 74 0.07 - - 97 0.09 902 0.05 74 0.07 97 0.09 908 0.02 908 0.02 908 0.02 909 0.07 <td>131</td>	131
Copper Domains Gold Domains	1207				45,384	0.07	30	-	-	-	45,384	0.07	30
	1208				130,770	0.09	122	-	-	-	130,770	0.09	122
ddo	1209				113,680	0.06	71	-	-	-	113,680	0.06	71
0	1210				-	-	-	19,512	0.07	14	19,512	0.07	14
	1211				-	-	-	98,582	0.06	56	98,582	0.06	56
	1212				-	-	-	285,970	0.07	200	285,970	0.07	200
	1301				255,272	0.11	273	-	-	-	255,272	0.11	273
	1302				6,155	0.11	7	-	-	-	6,155	0.11	7
	1303				42,824	0.09	37	-	-	-	42,824	0.09	37
	1304				106,240	0.10	110	-	-	-	106,240	0.10	110
	1305				91,736	0.05	49	-	-		91,736	0.05	49
	1306				114,350	0.05	52	-	-	-	114,350	0.05	52
	1307				-	-	-	6,467	0.03	2	6,467	0.03	2
	1308				-	-	-	-	-	-	-	-	-
	1309				-	-	-	23,880	0.06	13	23,880	0.06	13
	1401				644,656	0.07	443	-	-	-	644,656	0.07	443
	1402				68,020	0.05	34	-	-	-	68,020	0.05	34
	1403				129,546	0.09	110	-	-	-	129,546	0.09	110
	1404				-	-	-	27,003	0.01	2	27,003	0.01	2
	1405				-	-	-	14,568	0.02	3	14,568	0.02	3
	1406				24,616	0.02	5		-	-	24,616	0.02	5
	1407					-		764	0.03	0	764	0.03	0
										-			
IALO	1000							1,313	0.01	0	1,313	0.01	0
	1000							_,515	0.01	5	2,010	5.01	5
	Total	<u> </u>			3 881 067	0.07	2 062	864 242	0.10	001	4 746 200	0.09	3 742
		<u> </u>		· · ·	0,001,007		2,002	557,342	U.10	100	-1,-10,305	0.00	3,743

The following block model report for cobalt was based on the following: >= 2.0 AuEq1

The following block model report for bismuth was based on the following: >= 2.0 AuEq1

	2.0g/t		Measured			Indicated			Inferred			Total	
	COG	Tonnes	Bi %	Ві Т	Tonnes	Bi %	Ві Т	Tonnes	Bi %	Ві Т	Tonnes	Bi %	Ві Т
	1101				02 740	0.40	45.4				02 740	0.40	45
	1101				83,/18	0.18	154	-	-	-	83,/18	0.18	15
	1102				70,923	0.25	160	-	-	-	70,925	0.25	10
	1103				51,853	0.41	214	4,778	0.29	14	56,631	0.40	22
	1104				6,309	0.58	37	6,840	0.58	40	13,149	0.58	/
Copper Domains Gold Domains	1105				-	-	-	38,316	0.27	104	38,316	0.27	10
	1106				-	-	-	13,999	0.12	16	13,999	0.12	1
	1201				58,688	0.36	213	-	-	-	58,688	0.36	21
	1202				11,617	0.10	12	2,331	0.10	2	13,948	0.10	1
	1203				69,669	0.11	76	-	-	-	69,669	0.11	22
	1204				198,922	0.12	231	-	-	-	198,922	0.12	23
	1205				34,824	0.20	/0	-	-	-	34,824	0.20	/
	1206				127,596	0.12	159	181	0.10	0	127,777	0.12	15
	1207				-	-	-	22,607	0.17	38	22,607	0.17	3
	1208				6,814	0.46	32	3,852	0.45	1/	10,666	0.46	4
ins	1209				6,016	0.06	4	15,202	0.08	12	21,218	0.08	1
ano.	1210				1,910	0.04	1	36,123	0.05	18	38,033	0.05	1
õ	1211				-	-	-	10,005	0.32	32	10,005	0.32	3
ploi	1212				-	-	-	2,682	0.03	1	2,682	0.03	
0	1213				-	-	-	-	-	-	-	-	-
	1301				33,226	0.11	36	-	-	-	33,226	0.11	3
	1302				81,500	0.23	189	20	0.11	0	81,520	0.23	18
	1303				68,441	0.19	129	-	-	-	68,441	0.19	12
	1304				107,535	0.09	97	-	-	-	107,535	0.09	9
	1305				-	-	-	-	-	-	-	-	-
	1306				-	-	-	30,804	0.14	42	30,804	0.14	
	1307				-	-	-	1,896	0.03	1	1,896	0.03	
	1308				2,745	0.30	8	-	-	-	2,745	0.30	
	1401				389,153	0.27	1,047	-	-	-	389,153	0.27	1,04
	1402				63	2.17	1	-	-	-	63	2.17	
	1403				12,063	0.09	11	2,948	0.04	1	15,011	0.08	
	1404				4,048	0.03	1	-	-	-	4,048	0.03	
	1405				-	-	-	-	-	-	-	-	-
	1406				-	-	-	-	-	-	-	-	-
	1101				60,604	0.03	21	-	-	-	60,604	0.03	:
	1102				2,945	0.02	0	-	-	-	2,945	0.02	
	1103				-	-	-	-	-	-	-	-	-
	1104				83,017	0.24	200	-	-	-	83,017	0.24	20
	1105				96,191	0.12	117	-		-	96,191	0.12	1:
	1106				146.831	0.08	117	-		-	146.831	0.08	11
	1107				-	-	-	12.827	0.07	9	12.827	0.07	
	1108				-			2,854	0.02	0	2.854	0.02	
	1109				-			150.845	0.14	207	150.845	0.14	20
	1110				-			-		-	-	_	_
	1111				-			12,397	0.04	5	12,397	0.04	
	1112				-			2,102	0.01	0	2,102	0.01	
	1113				-			12.674	0.01	2	12.674	0.01	
	1114							,					
	1201				14 524	0.00	1	-			14 524	0.00	
	1201				63 / 82	0.00	23	-			63 482	0.00	
	1202				4 805	0.04	23				4 805	0.04	
	1205	-				-	- 2	-		-		-	
	1204				45 200	-	-	-	-	-	45 200	0.01	
ains	1205				45,208	0.01	b 02	-	-	-	45,208	0.01	
eme	1206				103,388	0.06	92	-	-	-	103,388	0.06	
ğ	1207	-			45,384	0.05	25	-	-	-	45,384	0.06	
be	1208	-			112 000	0.03	34	-	-	-	112 000	0.03	
Co	1209				113,680	0.06	65	-	-	-	113,680	0.06	
-	1210				-	-	-	19,512	0.01	3	19,512	0.01	
	1211				-	-	-	98,582	0.03	26	98,582	0.03	
	1212				-	-	-	285,970	0.02	70	285,970	0.02	
	1301				255,272	0.04	101	-	-	-	255,272	0.04	1
	1302				6,155	0.03	2	-	-	-	6,155	0.03	
	1303				42,824	0.05	19	-	-	-	42,824	0.05	
	1304				106,240	0.02	17	-	-	-	106,240	0.02	
	1305	-			91,736	0.00	4	-	-	-	91,736	0.00	
	1306	-			114,350	0.01	12	-	-	-	114,350	0.01	
	1307	l			-	-	-	6,467	0.00	0	6,467	0.00	
	1308				-	-	-	-	-	-	-	-	-
	1309				-	-	-	23,880	0.02	5	23,880	0.02	
	1401				644,656	0.07	438	-	-	-	644,656	0.07	4
	1402				68,020	0.02	16	-	-	-	68,020	0.02	
	1403				129,546	0.02	26	-	-	-	129,546	0.02	
	1404				-	-	-	27,003	0.03	9	27,003	0.03	
	1405				-	-	-	14,568	0.02	3	14,568	0.02	
	1406				24,616	0.01	1	-	-	-	24,616	0.01	
					-	-	-	764	0.06	0	764	0.06	
	1407												
	1407												
0	1407							1,313	0.26	3	1,313	0.26	

The following block model report for silver was based on the following: >= 2.0 AuEq1
		2.0g/t		Measured			Indicated			Inferred			Total	
Image Image <th< th=""><th></th><th>COG</th><th>Tonnes</th><th>Ag g/t</th><th>Ag Oz</th><th>Tonnes</th><th>Ag g/t</th><th>Ag Oz</th><th>Tonnes</th><th>Ag g/t</th><th>Ag Oz</th><th>Tonnes</th><th>Ag g/t</th><th>Ag Oz</th></th<>		COG	Tonnes	Ag g/t	Ag Oz	Tonnes	Ag g/t	Ag Oz	Tonnes	Ag g/t	Ag Oz	Tonnes	Ag g/t	Ag Oz
Intel Intel< I		4404				02 74 0	2.45	0.472				02 740	2.45	0.470
Intel Intel<		1101				83,/18	3.15	8,473	-	-	-	83,/18	3.15	8,473
Internet		1102				70,923	4.45	10,154	-	-	-	70,923	4.45	10,154
Integr		1103				51,853	3.14	5,235	4,778	2.05	314	56,631	3.05	5,549
Integr Image Image <t< td=""><td></td><td>1104</td><td></td><td></td><td></td><td>6,309</td><td>1.87</td><td>379</td><td>6,840</td><td>1.87</td><td>411</td><td>13,149</td><td>1.87</td><td>/91</td></t<>		1104				6,309	1.87	379	6,840	1.87	411	13,149	1.87	/91
Integr Integr<		1105				-		-	38,316	4./3	5,829	38,316	4./3	5,829
Image: sector		1106				-	-	-	13,999	0.97	436	13,999	0.97	436
Image:		1201				58,688	3.23	6,093	-	-	-	58,688	3.23	6,093
Pertu Description Description <thdescription< th=""> <thd< td=""><td></td><td>1202</td><td></td><td></td><td></td><td>11,617</td><td>2.79</td><td>1,042</td><td>2,331</td><td>2.65</td><td>199</td><td>13,948</td><td>2.77</td><td>1,241</td></thd<></thdescription<>		1202				11,617	2.79	1,042	2,331	2.65	199	13,948	2.77	1,241
Image: section of the sectio		1203				69,669	2.96	6,635	-	•	-	69,669	2.96	6,635
1200 - - - - - - 39.84 2.48 2.40 1200 - - - - 1 2.40 1.20 2.20		1204				198,922	2.39	15,266	-	•	-	198,922	2.39	15,266
Image:		1205				34,824	2.43	2,/21	-	-	-	34,824	2.43	2,/21
Def matrix Def matrix <thdef matrix<="" th=""> Def matrix Def matr</thdef>		1206				127,596	2.49	10,202	181	2.52	15	127,777	2.49	10,217
Image Image <th< td=""><td></td><td>1207</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>22,607</td><td>2.37</td><td>1,/23</td><td>22,607</td><td>2.37</td><td>1,/23</td></th<>		1207				-	-	-	22,607	2.37	1,/23	22,607	2.37	1,/23
B 1.00 -		1208				6,814	2.93	641	3,852	2.73	338	10,666	2.85	979
Big 1200 1200 1.200 1.210 2.44 2.72 3.0.23 3.0.74 3.0.23 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 4.0.2 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24 3.0.24	ins	1209				6,016	3.98	769	15,202	3.38	1,653	21,218	3.55	2,422
Bit Mark Image Image <thimage< th=""> Image Image <</thimage<>	ŭ	1210				1,910	4.41	2/1	36,123	3.67	4,262	38,033	3./1	4,533
B 1122 -	po	1211				-	-	-	10,005	4.73	1,523	10,005	4.73	1,523
Image: constraint of the second sec	50C	1212				-		-	2,682	1.65	142	2,682	1.65	142
1301 1322 1302 1303 1 1 1 3426 <td>0</td> <td>1213</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	0	1213				-	-	-	-	-	-	-	-	-
1300 - - - - - - - - - 68,41 138 8, 1304 - <		1301				33,226	5.05	5,396	-	-	-	33,226	5.05	5,396
1303 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1		1302				81,500	4.42	11,574	20	4.10	3	81,520	4.42	11,576
1300 1300 <th< td=""><td></td><td>1303</td><td></td><td></td><td></td><td>68,441</td><td>3.98</td><td>8,/53</td><td>-</td><td>-</td><td>-</td><td>107 525</td><td>3.98</td><td>8,/53</td></th<>		1303				68,441	3.98	8,/53	-	-	-	107 525	3.98	8,/53
1200 1 1 1 1 1 1 1 1 1 1307 - - - 1 1,266 1,33 1,335 2,245 1,88 1,266 1,35 2,245 1,88 1,66 - - - 38,353 5,33 7,415 1,88 1,01 5,08 5,33 5,33 7,415 1,88 1,01 5,08 5,33 5,33 7,416 - - - 38,03 5,08 1,01 5,08 1,01 5,08 1,01 5,08 1,01 5,08 1,01 5,08 1,01 5,08 1,01 1,01 5,08 1,01 1,01 5,08 1,01 1,01 5,08 1,01 1,01 5,08 1,01		1304				107,535	3.14	10,859	-	-	-	107,535	3.14	10,859
1300 1308 1 0 </td <td></td> <td>1305</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td>		1305				-	-	-	-	-	-	-	-	
120// 1 1 1 1 1 1 1 1 2 1208 3.35 1208 3.35 1208 3.35 1208 1308 1308 1400 - - 389,153 5.39 74,155 - - - 389,153 5.39 74,156 - - - 389,153 5.39 74,157 3 - - - 389,153 5.89 74,07 - - - 389,153 5.89 74,07 -<		1306				-	-	-	30,804	4.39	4,348	30,804	4.39	4,348
100 100 <td></td> <td>1307</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>1,896</td> <td>3.55</td> <td>216</td> <td>1,896</td> <td>3.55</td> <td>216</td>		1307				-	-	-	1,896	3.55	216	1,896	3.55	216
Interna Interna <t< td=""><td></td><td>1308</td><td></td><td></td><td></td><td>2,745</td><td>1.88</td><td>166</td><td>-</td><td>-</td><td>-</td><td>2,745</td><td>1.88</td><td>166</td></t<>		1308				2,745	1.88	166	-	-	-	2,745	1.88	166
Lang Lang <thlang< th=""> Lang Lang <thl< td=""><td></td><td>1401</td><td></td><td></td><td></td><td>389,153</td><td>5.93</td><td>/4,156</td><td>-</td><td>-</td><td>-</td><td>389,153</td><td>5.93</td><td>/4,156</td></thl<></thlang<>		1401				389,153	5.93	/4,156	-	-	-	389,153	5.93	/4,156
Lange Lange <th< td=""><td></td><td>1402</td><td></td><td></td><td></td><td>63</td><td>0.89</td><td>2</td><td>-</td><td>-</td><td>-</td><td>63</td><td>0.89</td><td>2</td></th<>		1402				63	0.89	2	-	-	-	63	0.89	2
1404 0 4,048 1.24 1.01 - - 4,048 1.24 1405 - 1005 - - 1006 - - 1006 - - - - - - - - - - - - - -		1403				12,063	5.69	2,205	2,948	2.58	244	15,011	5.08	2,450
1405 ·		1404				4,048	1.24	161	-	-	-	4,048	1.24	161
1400 1 <th1< th=""> 1 1 1</th1<>		1405				-	-	-	-	-	-	-	-	-
Into Into <thinto< th=""> Into Into <thi< td=""><td></td><td>1406</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></thi<></thinto<>		1406				-		-	-	-	-	-	-	-
Intr 0 0 0 0 0 0 0 0 0 0 0 1.37 0 </td <td></td> <td>4404</td> <td></td> <td></td> <td></td> <td>60.604</td> <td>4.57</td> <td>2.052</td> <td></td> <td></td> <td></td> <td>60.604</td> <td>4.57</td> <td>2.052</td>		4404				60.604	4.57	2.052				60.604	4.57	2.052
1102 1 2 3 0 1 0 1 <th1< th=""> 1 1 1</th1<>		1101				60,604	1.57	3,053	-	-	-	60,604	1.57	3,053
1103 .		1102				2,945	0.62	58	-	-	-	2,945	0.62	58
1114 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>		1103				-		-	-	-	-	-	-	-
1105 1 1 1 3 1		1104				83,017	1.51	4,038	-	-	-	83,017	1.51	4,038
110b 1 <th1< th=""> 1 1 1</th1<>		1105				96,191	1.16	3,572	-	•	-	96,191	1.16	3,572
III0/ Image: second secon		1106				146,831	1.68	7,945	-	-	-	146,831	1.68	7,945
ID8 I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>		1107				-	•	-	12,827	0.63	261	12,827	0.63	261
Second		1108				-	•	-	2,854	0.56	52	2,854	0.56	52
1110 ·		1109				-		-	150,845	0.69	3,327	150,845	0.69	3,327
Second		1110				-		-	-	-	-	-	-	-
III2 IIII IIII IIII IIII IIII IIII IIII IIII IIII IIIII IIIII IIIIII IIIIIIII IIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		1111				-	-	-	12,397	0.82	328	12,397	0.82	328
III3 IIII3 III3 III3 <thiii3< th=""> III3 III3 <th< td=""><td></td><td>1112</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>2,102</td><td>1.12</td><td>/5</td><td>2,102</td><td>1.12</td><td>/5</td></th<></thiii3<>		1112				-	-	-	2,102	1.12	/5	2,102	1.12	/5
Intra Image: Constraint of the constraint of		1113				-	-	-	12,074	4.60	1,980	12,074	4.60	1,980
Idul Idult		1114				-	-	-	-	-	-	-	-	-
Internal sector Internal s		1201				14,524	0.75	348		-	-	14,524	0.75	348
Product 1.03		1202				63,482	1.48	3,027	-	-	-	63,482	1.48	3,027
India India< India India<		1203				4,895	2.30	5/1	-	-	-	4,695	2.30	5/1
No 1.00 1.01 2.378 1.01 2.378 1.01 <th< td=""><td></td><td>1204</td><td></td><td></td><td></td><td>45 200</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>45 200</td><td>-</td><td>-</td></th<>		1204				45 200	-	-	-	-	-	45 200	-	-
L00 - 1 - 1 - 1 - 1 - 1	ins	1205				45,208	1.04	2,370	-	-	-	45,208	1.04	2,370
Levr - 130,770 179 7,530 - - 130,670 179 7,530 - - 130,670 179 7,530 - - 130,680 1.44 5,52 1209 - - - - 99,582 1.39 4,303 98,582 1.39 4,393 98,582 1.39 4,303 98,582 1.39 4,303 98,582 1.39 4,303 98,582 1.39 4,303 98,582 1.39 4,303 98,582 1.39 4,303 98,582 1.39 4,103 1.00 1.00 1.00 1.00 1.10 42,824 1.57 2,159 - - 106,240 1.33 4,665 1.00 1.00 1.00 1.00 1.00	e uc	1200				45 204	1.50	2 254	-	-	-	45 204	1.50	2 254
BOD 130,70 1.73 7,33 - - - - 130,70 1.73 7,33 - - - - 113,680 1.14 5,253 - - - 113,680 1.14 5,253 - - - 113,680 1.14 5,253 1.32 133 131,180 1.14 4,390 98,582 1.33 19,512 1.32 133 1211 - - - 1.0 98,582 1.39 4,390 98,582 1.29 11, 121 1.21 1.22 1.29 11,301 255,272 1.20 9,849 - - 255,972 1.29 11,37 4,17 2,159 - - 42,824 1.57 2,159 - - 42,824 1.57 2,159 - - 106,240 1.37 4,669 - - 114,350 1.47 5,133 1.47 5,236 - - 114,350 1.47 5,136	r Do	1207				45,384	1.01	2,351	-	-	-	45,384	1.01	2,351
B 113,880 1.44 3,259 - - - - 113,880 1.144 5,259 - - - - 113,880 1.144 5,259 1.32 831 19512 1.32 831 19512 1.32 831 19512 1.33 1.32 1.33 1.32 1.33 1.32 1.33 1.32 1.33 1.32 1.33	bei	1208				112 000	1.79	7,530	-	-	-	112 000	1.79	7,530
12.10 - - - - 1	Cop	1209				113,680	1.44	5,259	10 5 1 2	- 1.33	-	10,510	1.44	5,259
1111 - - - - - - - 285,972 1.39 4,390 98,982 1.13 1.13 1.13 1.13 4,390 98,982 1.13 1.14		1210				-	-	-	19,512	1.32	4 200	19,512	1.32	4 200
1112 - - - 202 11,29 11,37 2,19 . . 42,824 157 2,1 11,37 4,66 . . 11,350 11,37 4,69 . . 91,736 11,25 3,690 . . 91,736 11,350 11,47 5,36 . . 91,736 11,47 5,36 . . 91,736 11,47 5,36 . . 91,736 11,4350 1,47 5,3 		1211					-	-	20,262	1.39	11 007	285.070	1.39	4,590
1301 -		1212				255 272	-	0.040	203,970	1.29	11,09/	263,970	1.29	11,697
1302 0 0 0 1.46 2.88 - - - 6,155 1.46 1303 4 42,824 157 2,159 - - 42,824 157 2,159 - - 42,824 157 2,1 1304 106,240 1.37 4,669 - - 106,240 1.37 4,4 1305 1 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 1.61 1,1232 23,880 1.61 1,147 5,386 1.61 1,1232 23,880 1.61 1,14732 23,880 1.61 1,1453 1.46 1.8 1.0 1.0 1.46 1.6 1.47 5.8 1.47 1.6 1.47 1.6 1.2 2,703 - - 1.64,656 1.8 38,115 <		1301				255,272	1.20	9,849	-	-	-	255,272	1.20	9,849
1303 - - - - - - 42,824 1.57 2,159 - - - 42,824 1.57 2,159 - - - 42,824 1.57 2,159 - - - 42,824 1.37 4,46 1.37 4,666 - - 106,240 1.37 4,666 - - 106,240 1.37 4,666 - - 106,240 1.37 4,667 0.74 - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 5,386 - - - 114,350 1.47 6,131 1,313 1,313 1,313 1,3		1302				6,155	1.40	288	-	-	-	42,024	1.46	288
Loc Ion,Add Io		1303				42,824	1.57	2,159	-	-	-	42,624	1.57	2,159
1300 14000 14000 14000		1304				105,240	1.37	4,669	-	-	-	01 720	1.37	4,669
1300 114,50 1.4/ 5,380 - - - - 114,50 1.4/ 5,380 1307 - - - - 6,67 - - - 114,500 1.4/ 5,380 - 1401 - - - 66,602 1.24 2,703 - - - 66,602 1.24 2,703 1.09 - 129,546 1.47 6,135 - - 129,546 1.47 6,147 6,135 - - 129,546		1305				91,/36	1.25	5,690	-	-	-	91,/36	1.25	5,690
1307 1308 1 </td <td></td> <td>1306</td> <td></td> <td></td> <td></td> <td>114,350</td> <td>1.47</td> <td>5,386</td> <td>-</td> <td>-</td> <td>-</td> <td>114,350</td> <td>1.4/</td> <td>5,386</td>		1306				114,350	1.47	5,386	-	-	-	114,350	1.4/	5,386
1306 Image: constraint of the state of the		1307				-	-	-	0,40/	0.74	153	0,467	0.74	153
1300 - - - - 2.28 0 1.61 1,242 23,880 1.61 1.7 6.60 1.22 1.61 1.7 6.60 1.7 6.7 1.61 1.7 6.7 1.45 1.17 1.7 1.7 <		1308				-	-	-	-	-	-	-	-	-
1401 - - - - - - 644,556 1.84 38,113 - - - - 644,556 1.84 38,113 - - - - 644,556 1.84 38,113 - - - - 644,556 1.84 38,113 - - - - 644,556 1.84 38,113 - - - - 664,020 1.24 2,703 - - - 668,020 1.24 2,703 1.00 - 129,546 1.47 66,135 - - - 129,546 1.47 66,135 - - - 129,546 1.47 66,135 1.08 1.015 1.015 1.016 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.66 1.47 1.67 1.47		1309				-	-	-	23,880	1.61	1,232	23,880	1.61	1,232
14402 14403 1 129,546 1.24 2,703 - - - 68,020 1.24 2,2 1403 129,546 147 6,135 - - - 129,546 1.47 6,1 1404 129,546 1.47 6,135 - - 129,546 1.47 6,0 1405 7.003 1.09 943 27,003 1.09 24,016 1.38 1,089 - - 24,616 1.38 1,0 140,58 1.47 6,87 14,568 1.47 1.08 140 1.08 1.01 1.01 1.08 1.01 1.08 1.01 1.08		1401				644,656	1.84	38,115	-	-	-	644,656	1.84	38,115
1403 ·		1402				68,020	1.24	2,703	-	-	-	68,020	1.24	2,703
1404 - - - 27,003 1.09 943 27,003 1.09 1405 - - - 27,003 1.09 943 27,003 1.09 1405 - - - - 27,003 1.09 943 27,003 1.09 1406 - - - 24,616 1.38 1.089 - - 24,616 1.38 1.0 1407 - - - - 764 1.08 27 764 1.08 1407 - - - - 764 1.08 27 764 1.08 1400 - - - - - 764 1.08 27 764 1.08 27 1000 - - 3,881,967 2.42 302,294 864,342 1.73 47,971 4,746,309 2.30 350,		1403				129,546	1.47	6,135	-	-	-	129,546	1.47	6,135
1405 - - - 14,568 1.47 687 14,568 1.47 1406 - 24,616 1.38 1,089 - - - 24,616 1.38 1,0 1407 - - - - - - 24,616 1.38 1,0 1407 - - - - - - - 24,616 1.38 1,0 1407 - - - - - - - - - - 24,616 1.38 1,0 1407 - - - - - - - - 764 1.08 -		1404				-	-	-	27,003	1.09	943	27,003	1.09	943
1400 - - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - - 24,616 1.38 1,089 - - 764 1.08 - - - - 764 1.08 - - - 1,013 3.15 133 1,313 3.15 -		1405				-	-	-	14,568	1.47	687	14,568	1.47	687
140/ - - - - 764 1.08 27 764 1.08 HALO 1000 - - - - 764 1.08 27 764 1.08 Total: - - - - - 764 1.08 27 764 1.08		1406				24,616	1.38	1,089	-	-	-	24,616	1.38	1,089
HALO 1000 1,313 3.15 133 1,313 3.15 Total: 3,881,967 2.42 302,294 864,342 1.73 47,971 4,746,309 2.30 350,		1407				-	-	-	764	1.08	27	764	1.08	27
HALU 1000 1000 1,313 3.15 133 1,313 3.15 Total: 3,881,967 2.42 302,294 864,342 1.73 47,971 4,746,309 2.30 350,		4000												
Total: - - 3,881,967 2.42 302,294 864,342 1.73 47,971 4,746,309 2.30 350,	HALU	1000							1,313	3.15	133	1,313	3.15	133
Totai: 3,881,967 2.42 302,294 864,342 1.73 47,971 4,746,309 2.30 350,		L		<u> </u>										
		Total:	-	· ·	-	3,881,967	2.42	302,294	864,342	1.73	47,971	4,746,309	2.30	350,266

The following block model report for magnetite was based on the following: >= 2.0 AuEq1

	2.0g/t		Measured			Indicated			Inferred			Total	
	COG	Tonnes	Mag wt%	Mag kT	Tonnes	Mag wt%	Mag kT	Tonnes	Mag wt%	Mag kT	Tonnes	Mag wt%	Mag kT
	1101				83,718	25.70	21.5	-	-	-	83,718	25.68	21.5
	1102				70,923	19.93	14.1	-	-	-	70,923	19.88	14.1
	1103				51,853	15.46	8.0	4,778	22.05	1.1	56,631	16.07	9.1
	1104				6,309	22.79	1.4	6,840	17.04	1.2	13,149	19.77	2.6
	1105				-	•	-	38,316	21.61	8.3	38,316	21.66	8.3
	1106				-	-	-	13,999	24.75	3.5	13,999	25.00	3.5
	1201				58,688	13.//	8.1	-	-	-	58,688	13.80	8.1
	1202				11,61/	40.00	4.6	2,331	40.31	0.9	13,948	39.43	5.5
	1203				69,669	32.05	22.3	-	-	-	69,669	32.01	22.3
	1204				198,922	20.39	40.6	-	-	-	198,922	20.41	40.6
	1205				34,824	20.24	7.0	-	-		34,824	20.10	7.0
	1206				127,596	7.36	9.4	181	8.20	-	12/,///	7.36	9.4
	1207				-	-	-	22,607	14.51	3.3	22,607	14.60	3.3
	1208				6,814	15.82	1.1	3,852	15.62	0.6	10,666	15.94	1./
ins	1209				6,016	15.94	1.0	15,202	15.72	2.4	21,218	16.02	3.4
ũ	1210				1,910	14.35	0.3	36,123	17.01	6.1	38,033	16.83	6.4
ğ	1211				-	•	-	10,005	23.81	2.4	10,005	23.99	2.4
olo	1212				-	•	-	2,682	21.04	0.6	2,682	22.37	0.6
0	1213				-	-	-	-	-	-	-	-	-
	1301				33,226	16.86	5.6	-	-	-	33,226	16.85	5.6
	1302				81,500	22.29	18.2	20	5./3	-	81,520	22.33	18.2
	1303				68,441	14.30	9.8	-	-	-	68,441	14.32	9.8
	1304				107,535	15.27	16.4	-	-	-	107,535	15.25	16.4
	1305				-	-	-	-	-	-	-	-	-
	1306				-	-	-	30,804	11.90	3.7	30,804	12.01	3.7
	1307				-	-	-	1,896	8.78	0.2	1,896	10.55	0.2
	1308				2,745	12.99	0.4	-	-	-	2,745	14.57	0.4
	1401				389,153	29.99	116.7	-	-	-	389,153	29.99	116.7
	1402				63	37.90	-	-	-	-	63	-	-
	1403				12,063	18.89	2.3	2,948	23.86	0.7	15,011	19.99	3.0
	1404				4,048	24.56	1.0	-	-	-	4,048	24.70	1.0
	1405				-	-	-	-	-	-	-	-	-
	1406				-	-	-	-	-	-	-	-	-
	1101				60,604	14.93	9.1	-	-	-	60,604	15.02	9.1
	1102				2,945	18.20	0.5	-	-	-	2,945	16.98	0.5
	1103				-	-	-	-	-	-	-	-	-
	1104				83,017	14.52	12.1	-	-	-	83,017	14.58	12.1
	1105				96,191	21.60	20.8	-	-	-	96,191	21.62	20.8
	1106				146,831	22.66	33.3	-	-	-	146,831	22.68	33.3
	1107				-	-	-	12,827	19.33	2.5	12,827	19.49	2.5
	1108				-	-	-	2,854	16.95	0.5	2,854	17.52	0.5
	1109				-	-	-	150,845	25.77	38.9	150,845	25.79	38.9
	1110				-	-	-	-	-	-	-	-	-
	1111				-	-	-	12,397	18.17	2.3	12,397	18.55	2.3
	1112				-	-	-	2,102	23.49	0.5	2,102	23.79	0.5
	1113				-	-	-	12,674	20.53	2.6	12,674	20.51	2.6
	1114				-	-	-	-	-	-	-	-	-
	1201				14,524	22.65	3.3	-	-	-	14,524	22.72	3.3
	1202				63,482	22.51	14.3	-	-	-	63,482	22.53	14.3
	1203				4,895	7.28	0.4	-	-	-	4,895	8.17	0.4
	1204				-	-	-	-	-	-	-	-	-
s	1205				45,208	29.74	13.4	-	-	-	45,208	29.64	13.4
Jain	1206				163,388	25.94	42.4	-	-	-	163,388	25.95	42.4
Don	1207				45,384	15.17	6.9	-	-	-	45,384	15.20	6.9
er [1208				130,770	29.34	38.4	-	-	-	130,770	29.36	38.4
ddc	1209				113,680	18.77	21.3	-	-	-	113,680	18.74	21.3
ŭ	1210				-	-	-	19,512	9.01	1.8	19,512	9.23	1.8
	1211				-	-	-	98,582	26.65	26.3	98,582	26.68	26.3
	1212				-	-	-	285,970	14.16	40.5	285,970	14.16	40.5
	1301				255,272	20.11	51.3	-	-	-	255,272	20.10	51.3
	1302				6,155	23.05	1.4	-	-	-	6,155	22.75	1.4
	1303				42,824	23.04	9.9	-	-	-	42,824	23.12	9.9
	1304				106,240	18.58	19.7	-	-	-	106,240	18.54	19.7
	1305				91,736	17.98	16.5	-	-	-	91,736	17.99	16.5
	1306				114,350	12.35	14.1	-	-	-	114,350	12.33	14.1
	1307				-	-	-	6,467	11.62	0.8	6,467	12.37	0.8
	1308				-	-	-	-	-	-	-	-	-
	1309				-	-	-	23,880	4.98	1.2	23,880	5.03	1.2
	1401				644,656	34.93	225.2	-	-	-	644,656	34.93	225.2
	1402				68,020	33.97	23.1	-	-	-	68,020	33.96	23.1
	1403				129,546	29.57	38.3	-	-	-	129,546	29.56	38.3
	1404				-	-	-	27,003	21.08	5.7	27,003	21.11	5.7
	1405				-	-	-	14,568	26.56	3.9	14,568	26.77	3.9
	1406				24,616	31.55	7.8	-	-	-	24,616	31.69	7.8
	1407				-	-	-	764	32.72	0.2	764	26.18	0.2
										0.2			
HALO													
	Total	<u> </u>			3,881 967	24.04	933 3	863 029	18 80	162.7	4,744 996	23,10	1,096.0
		1									,,		,

Resource Comparison

A comparison analysis was conducted between the 2022 estimate and the 2019 estimate. The metal equivalence value used throughout the comparison is defined as:

• Au Equivalent = Au + Ag x 0.0136 + Bi x 4.6753 + Co x 13.0909 + Cu x 1.9793.

The metal equivalence value does not consider any recovery factors for different processing methods.

The comparisons have not been limited to any underground mine designs.

2022 and 2019 Comparison

The comparison of the 2022 CST estimate against the 2019 WGX (rov20190620.mdl) based on a \geq 2.50 AuEq ppm indicates:

- i. A -13% decrease in tonnage;
- ii. A -18% Au and -15% Bi grade reduction;
- iii. A +19% Cu, 31% Co and 3% Ag grade increase.
- iv. Magnetite was not estimated as a by product

However when considering the inferred components of the resources the differences are:

- i. A +26% increase in tonnage;
- ii. A +13% Au, +43% Cu, +48% Co, and 7% Au% Au and -15% Bi grade increases;
- iii. A -40% Bi grade decrease.

The observed difference between the estimates is due to the significant tonnage decrease (-66%) in the inferred category. The tonnage difference is associated with differences in the interpretation of ironstone and the Au, Cu and Co estimation domains. The differences are associated with:

- The Jupiter Deeps ironstone estimation domain for the 2019 estimate is substantially greater in volume than the ironstone domain used in the 2022 estimate. The large difference is due to the interpretation change based on new drillholes, which has limited the down-dip extension of the ironstone (Figure 8).
- The construction of the 2019 estimation domains, particularly copper, were extended a greater distance along strike and down dip with respect to the informing drill hole data. The current interpretation honours the observed plunge of the mineralisation which was not implemented well in the 2019 interpretations (Figure 9 and Figure 10);
- Extrapolation of copper domains at Jupiter Deeps below -550mRL in the Ganymede zone has been re classified as unclassified in the 2022 and not reported. (Figure 6 and Figure 10)
- The 2019 Au and Cu domains appear to be constructed in isolation and don't follow similar trends. The 2022 interpretation assumes mineralisation event controls are the same for Au and Cu even though they are temporally distinct events and follow similar trends.

Table 5: Comparison the 2022 WGX and 2019 WGX Rover1 resource estimates based on \geq 2.50 AuEq threshold.

	2022 MRE at 2.5 g/t Au Equivalent										
ResCat	Tonnes	Au g/t	Cu %	Co %	Bi %	Ag g/t					
Measured	-	-	-	-	-	-					
Indicated	4,547,931	1.69	1.53	0.07	0.10	2.28					
Inferred	1,444,645	0.61	1.14	0.10	0.16	1.63					
Total	5,992,576	1.43	1.43	0.08	0.12	2.13					

	2019 MRE at 2.5 g/t Au Equivalent										
Tonnes Aug/t Cu% Co% Bi% Ag											
Measured	-	-	-	-	-	-					
Indicated	3,607,525	1.49	1.06	0.05	0.17	2.14					
Inferred	3,275,736	2.03	1.37	0.07	0.10	2.00					
Total	6,883,261	1.75	1.21	0.06	0.14	2.07					

Metal										
Au Oz	CuT	CoT	BiT	Ag Oz						
-	-	-	-	-						
247,200	69,500	3,300	4,600	333,900						
28,300	16,500	1,400	2,300	75,900						
275,500	86,000	4,700	6,900	409,800						

Metal										
Au Oz	CuT	СоТ	BiT	Ag Oz						
-	-	-	-	-						
173,200	38,400	1,800	6,100	247,800						
213,500	44,700	2,400	3,200	210,500						
386,700	83,100	4,200	9,300	458,300						

2022 vs 2019 relative differences										
Tonnes Aug/t Cu% Co% Bi% Ag										
Measured	-	-	-	-	-	-				
Indicated	126%	113%	143%	148%	60%	107%				
Inferred	44%	30%	83%	135%	162%	82%				
Total	87%	82%	119%	131%	85%	103%				

Metal										
Au Oz	CuT	СоТ	BiT	Ag Oz						
-	-	-	-	-						
143%	181%	183%	75%	135%						
13%	37%	58%	72%	36%						
71%	103%	112%	74%	89%						

Figure 7: Metal Breakdown by Elevation Comparison between 2022 and 2019 models (AuEq Ounces)

Figure 8: Comparison of 2022 and 2019 Ironstone Domains

Figure 9: Comparison of 2022 and 2019 Gold Domains

Figure 10: Comparison of 2022 and 2019 Copper Domains

KEY RISKS

• The validity of the interpreted estimation domains is a key risk to the estimation process. Care was taken to account for the geological complexity when linking intervals within sections and between sections, but

local differences are likely to occur. The complexity of the interpretation is amplified due to the multiple domaining approach to account for the multiple commodities.

- A detailed mineralogical review should be conducted to assist with domaining and determining likely grade architecture of the mineralisation within the ironstone.
- The Rover 1 mineralisation is located approximately 400m below surface and the drilling is clustered due to the cost reduction benefits of wedging from existing drill holes.
- The estimation of the larger Au and Cu domains used an indicator based approach in an effort constrain higher grade material within and between sections. The indicator-based approach represents a potential risk if the spatial mapping of the high-grade trends is not representative of the underlying distribution.
- The Pre 2005 historic dataset is lacking standard reference metadata. It is unlikely the lack of metadata for the standards is material, but it does decrease the confidence of the resultant estimate.

KEY OPPORTUNITIES

• There is a potential to define additional resources below the down-plunge extension of the Jupiter Deeps trend. The likelihood potential outsides these trends is unknown without a detailed modelling of the stratigraphic sequence and additional drilling.

Figure 11: Potential exploration targets of the Rover 1 mineralisation. Image looking West and dashed line are interpreted trends.

References

- Abzalov, M. Z. (2006, May). Localised Uniform Conditioning (LUC): A New Approach for Direct Modelling of Small Blocks. *Mathematical Geology*, *38*(4), 393-411.
- Chiles, J.-P., & Delfiner, P. (1999). *Geostatistics Modeling Spatial Uncertainty*. John Wiley and Sons.
- Davis, T. (2010). *Structural Framework around the Rover 1 Deposit 5 Feb 2010.* impel Geoscience Technical Report for Westgold.
- Isatelle, F. (2022a). Technical Memo Rover 1 MRE Castile Jan 2022.
- Isatelle, F. (2022b). Technical Memo Rover1 Magnetite estimate Castile March 2022.
- Tomsett, A. (2017). 20170526 Rover1 Domaining Anaysis Final. WestGold Internal Technical Report.

Appendix 1: Estimation Parameters

Table 6: Estimation permutations for gold grade

Area	Domain	Volume	# samples	Estimation method	Threshold	Vario	Dynamic
Halo	1000	25,502,130	12982	Indicator	1.0	dir	N
	1101	24,159	52	Indicator	6.5	omni ref plane	Y
	1102	22,331	30	ОК	-	grouped 1102 1102 1105 1106 (empired plane	Y
Jupiter East	1103	17,282	31	ОК	-	grouped 1102-1105-1105-11067 omm ret plane	Y
	1104	3,977	9	Assign mean	-	2.42 g/t	
	1105	12,677	17	ОК	-	grouped 1102 1102 1105 1106 / omni ref plane	N
	1106	10,703	17	ОК	-	grouped 1102-1103-1105-11007 on inter plane	N
	1201	18,812	43	Indicator	1.6	omni ref plane	Y
	1202	3,510	15	ОК	-	grouped 1202-1205-1207-1208 / omni ref plane	Y
	1203	17,418	72	Indicator	4.3	omni ref plane	Y
	1204	56,357	189	Indicator	3.6	dir	Y
	1205	11,064	32	ОК	-	grouped 1202-1205-1207-1208 / omni ref plane	Ŷ
	1206	43,413	178	Indicator	3.1	omni ref plane	Y
Jupiter West	1207	7,864	27	ОК	-	grouped 1202 1205 1207 1208 / empired plane	Y
	1208	3,012	15	ОК	-	grouped 1202-1203-1207-12087 onini ter plane	N
	1209	13,119	35	Indicator	1.6	omni ref plane	Y
	1210	18,576	31	Indicator	1.5	omni ref plane	Y
	1211	5,237	21	ОК	-		N
	1212	2,992	13	ОК	-	grouped 1211-1212-1213 / omni	N
	1213	2,689	13	ОК	-		N
	1301	10,860	22	ОК	-	grouped 1301-1305-1307 / omni	N
	1302	26,013	74	Indicator	1.6	omni ref plane	Y
	1303	21,714	65	ОК	-	omni ref plane	Y
	1304	34,570	54	Indicator	2.4	omni ref plane or omni	N
Western							
	1305	8,322	15	ОК		grouped 1301-1305-1307 / omni	N
	1306	10,634	9	Assign mean	-	1.96 g/t	-
	1307	2,748	15	ОК	-	grouped 1301-1305-1307 / omni	N
	1308	2,593	9	Assign mean	-	2.22 g/t	-
	1401	96,246	172	Indicator	2.0	omni ref plane	Y
	1402	13,186	17	ОК	-	omni	N
lunitan Day	1403	15,344	31	Indicator	0.6	omni	N
Jupiter Deeps	1404	1,233	8	Assign mean	-	0.96 g/t	-
	1405	7,405	6	Assign mean	-	9.68 g/t (mean if we cap @ 15 g/t)	-
	1406	6,908	6	Assign mean	-	2.08 g/t	-

Table 7: Estimation permutations for copper grade

Area	Domain	Volume	# samples	Estimation method	Threshold	Vario	Dynamic
Halo	1000	25,502,130	11206	Indicator	2440.0	directional	N
	1101	46,850	87	Indicator	11250	omni ref plane	Y
	1102	10,173	31	Indicator	11700	omni	N
	1103	11,447	30	Indicator	7000	omni	N
	1104	39,801	58	ОК		grouped 1100	Y
	1105	45,415	82	ОК		omni ref plane	Y
	1106	68,310	118	Indicator	13600	omni ref plane	Y
luniter Fast	1107	9,525	14	ОК		grouped 1100	Y
Jupiter Lust	1108	16,631	20	ОК		omni ref plane	Y
	1109	53,879	75	Indicator	26500	omni ref plane	Y
	1110	8,730	17	ОК			Y
	1111	6,219	12	ОК		grouped 1100	Y
	1112	6,680	12	ОК		omni ref nlane	Y
	1113	7,725	18	ОК		on in rei plane	Y
	1114	12,258	20	ОК			Y
	1201	11,362	56	ОК		grouped 1200 - omni	N
	1202	26,001	106	Indicator	10800	omni ref plane	Y
	1203	2,451	22	ОК		grouped 1200 - omni	N
	1204	9,597	55	Indicator	5300	omni	N
Jupiter West	1205	16,114	32	Indicator	15480	omni	N
	1206	109,506	304	Indicator	5150	directional	Y
	1207	14,339	45	Indicator	6230	omni	N
	1208	70,237	233	Indicator	6000	omni ref plane	Y
	1209	60,700	155	Indicator	5640	omni	N
	1210	8,431	28	OK		grouped 1200 - omni	N
	1211	31,740	58	Indicator	16000	omni	N
	1212	97,172	96	ok		grouped 1200 - omni	N
	1301	100,741	152	OK		grouped 1300 - omni ref plane	Y
	1302	14,258	45	Indicator	14000	omni	N
	1303	21,517	62	Indicator	11500	omni	N
	1304	42,652	117	ok		grouped 1300 - omni ref plane	Y
Western	1305	29,704	106	Indicator	16000	omni ref plane	Y
	1306	35,233	92	Indicator	9000	omni	N
	1307	14,551	26	ОК			Y
	1308	3,764	15	ОК		grouped 1300 - omni ref plane	Y
	1309	12,096	48	OK			Y
	1401	247,536	374	Indicator	21500	omni	N
	1402	47,843	82	Indicator	8500	omni	N
	1403	45,126	80	ОК			N
Jupiter Deeps	1404	16,657	17	ОК		grouped 1400	N
	1405	5,239	27	ОК		omni	N
	1406	20,673	30	ОК			N
	1407	11,021	15	OK			N

Table 8: Estimation permutations for cobalt grade

Area	Domain	# samples	Estimation method	Threshold	Vario	Dynamic
Halo	1000	11072	ОК		directional	N
	1101	87	Indicator	400	omni ref plane	Y
	1102	31	Indicator	700	omni	N
	1103	30	Indicator	500	omni	N
	1104	58	Indicator	500	omni	N
	1105	82	ОК		grouped 1100 - omni ref plane	Y
	1106	118	Indicator	700	omni ref plane	Y
lupitor Fact	1107	14	ОК			Y
Jupiter Last	1108	20	ОК			Y
	1109	75	ОК			Y
	1110	17	ОК		grouped 1100 empiref plane	Y
	1111	12	ОК		grouped 1100 - omm rei plane	Y
	1112	12	ОК			Y
	1113	18	ОК			Y
	1114	20	ОК			Y
	1201	43	ОК			Y
	1202	97	ОК		grouped 1200 - ompi ref plane	Y
	1203	22	ОК		grouped 1200 - Onini ter plane	N
	1204	55	ОК			N
	1205	32	Indicator	600	omni (used P50 to compute vario)	N
luniter West	1206	291	Indicator	550	omni ref plane	Y
Jupiter West	1207	45	Indicator	350	omni ref plane	Y
	1208	227	ОК		grouped 1200 - omni ref plane	Y
	1209	155	ОК		Broabea 7700 cumiter brane	Y
	1210	28	Indicator	550	omni	N
	1211	58	Indicator	550	omni	N
	1212	96	Indicator	720	omni	N
	1301	152	Indicator	900	omni ref plane	Y
	1302	45	Indicator	960	omni	N
	1303	62	Indicator	500	omni	N
	1304	117	Indicator	500	omni ref plane	Y
Western	1305	106	ОК			N
	1306	92	ОК			N
	1307	26	ОК		grouped 1300 - omni	N
	1308	15	ОК			N
	1309	48	ОК			N
	1401	374	ОК		grouped 1400 - omni ref plane	Y
	1402	82	Indicator	440	omni ref plane	N
	1403	80	Indicator	800	omni ref plane	Y
Jupiter Deeps	1404	17	ОК			Y
	1405	27	ОК		grouped 1400 - omni ref plane	Ń
	1406	30	ОК			Y
	1407	15	ОК			N

Table 9: Estimation	permutations	for	bismuth	grade
---------------------	--------------	-----	---------	-------

Area	Domain	# samples	Estimation method	Threshold	Vario	Dynamic
Halo	1000	12732	ОК		directional	N
	1101	52	Indicator	120.0	omni ref plane	Ν
	1102	30	ОК		grouped 1100s	Y
Jupiter East	1103	31	ОК		omni ref plane	Y
	1104	9	Assign mean		4800ppm	
	1105	17	ОК		grouped 1100s	N
	1106	17	ОК		omni ref plane	N
	1201	43	Indicator	6000.0	omni	N
	1202	15	ОК		grouped 1200s	Y
	1203	72	ОК		omni ref plane	Y
	1204	189	Indicator	1400.0	omni ref plane	N
	1205	32	ОК		grouped 1200s	Y
	1206	178	Indicator	800.0	omni ref plane	N
Jupiter West	1207	27	ОК			Y
	1208	15	ОК		grouped 1200s	N
	1209	35	ОК		omni ret plane	Y
	1210	31	Indicator	400.0	omni	N
	1211	21	ОК			N
	1212	13	ОК		grouped 1200s	N
	1213	13	ОК		omm rei piane	N
	1301	22	ОК		grouped 1300s	Y
	1302	74	Indicator	200.0	omni ref plane	N
	1303	65	ОК		omni ref plane	Y
	1304	54	Indicator	450.0	omni	N
Western	1305	15	ОК		grouped 1300s omni ref plane	Y
	1306	9	Assign mean		1362ppm	
	1307	15	ОК		grouped 1300s omni ref plane	N
	1308	9	Assign mean		3004ppm	
	1401	172	ОК		grouped omni	Y
	1402	17	ОК		ref plane	Y
	1403	31	Indicator	140.0	omni	N
Jupiter Deeps	1404	8	Assign mean		277ppm	
	1405	6	Assign mean		422ppm	
	1406	6	Assign mean		1763ppm	

Table 10: Estimation	permutations	for silve	er grade
----------------------	--------------	-----------	----------

Area	Domain	# samples	Estimation method	Threshold	Vario	Dynamic
Halo	1000	12798	Indicator	1.5	directional	Ν
	1101	52	OK		grouped 1101-1105-1106	v
	1101	52	UK		omni ref plane	
	1102	30	Indicator	4.5	omni ref plane	Y
Jupiter East	1103	31	Indicator	3.0	omni	N
	1104	9	Assign mean		1.87PPM	
	1105	17	ОК		grouped 1101-1105-1106	N
	1106	17	ОК		omni ref place	N
	1201	43	Indicator	4.0	omni ref plane	Y
	1202	15	ОК		grouped 1200s	Y
	1203	72	ОК		omni ref plane	Y
	1204	188	ОК		directional - alone	Y
	1205	22	OK			V
	1205	32	UK		14200 ·	Ŷ
	1206	178	ОК		grouped 1200s	Y
Jupiter west	1207	27	ОК		omni rer plane	Y
	1208	15	ОК			N
[1209	35	Indicator	4.0	omni	Ν
"	1210	31	Indicator	5.0	omni	Ν
	1211	21	ОК		1 4 9 9 9	N
	1212	13	ОК		grouped 1200s	N
	1213	13	ОК		omni ref plane	N
	1301	22	ОК			Y
	1302	74	ОК		grouped 1300s	Y
	1303	65	ОК		omni ref plane	Y
	1304	54	Indicator	3.4	omni	N
	4005		011		grouped 1300s	
western	1305	15	ŬK		omni ref plane	Ŷ
	1306	9	Assign mean		4.39 PPM	
	1207	15	OK		grouped 1300s	N
	1307	15	UK		omni ref plane	IN
	1308	9	Assign mean		1.88 PPM (CAP 4PPM)	
	1401	172	ОК		grouped 1401-1402	Y
	1402	17	ОК		omni ref plane	Y
	1403	31	Indicator	5.5	omni	N
Jupiter Deeps	1404	8	Assign mean		1.24 PPM	
[1405	6	Assign mean		2.25PPM (CAP 4 PPM)	
[1406	6	Assign mean		6.43 PPM (CAP 10PPM)	

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector	Search 2	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
IND_AU_DOMAIN_1000	0.004	0.005	14.0m 10.0m 8.0m	0.003	108.0m 66.0m 34.0m	-90 90 90		80	55	25	5	16		160	110	45	5	20
IND_AU_DOMAIN_1101	0.060	0.040	5.0m 5.0m 5.0m	0.055	16.0m 16.0m 8.0m	255 110 -105		60	45	15	5	15		100	65	35	5	18
IND_AU_DOMAIN_1201	0.100	0.080	8.0m 8.0m 5.0m	0.070	35.0m 35.0m 10.0m	-90 90 55		6	45	15	5	12		100	65	35	5	16
IND_AU_DOMAIN_1203	0.050	0.050	5.0m 5.0m 5.0m	0.064	20.0m 20.0m 10.0m	-80 80 170		40	40	15	5	12		80	80	30	5	16
IND_AU_DOMAIN_1204	0.060	0.066	15.0m 10.0m 5.0m	0.100	75.0m 40.0m 12.0m	-75 100 90		40	40	15	5	15		80	80	30	5	16
IND_AU_DOMAIN_1206	0.080	0.070	5.0m 5.0m 5.0m	0.073	25.0m 25.0m 10.0m	105 90 100		25	25	10	7	15		70	70	50	5	16
IND_AU_DOMAIN_1209	0.080	0.050	5.0m 5.0m 5.0m	0.058	38.0m 38.0m 10.0m	-90 90 90		30	30	10	6	12		90	90	50	5	16
IND_AU_DOMAIN_1210	0.100	0.060	5.0m 5.0m 5.0m	0.057	38.0m 38.0m 10.0m	-90 90 90		30	30	10	6	12		60	60	25	5	16
IND_AU_DOMAIN_1302	0.040	0.085	5.0m 5.0m 5.0m	0.077	33.0m 33.0m 10.0m	-85 100 90		30	30	10	6	15		90	90	50	5	18
IND_AU_DOMAIN_1304	0.040	0.080	5.0m 5.0m 5.0m	0.040	35.0m 35.0m 35.0m	90 0 0		30	30	30	6	15		60	60	60	5	18
IND_AU_DOMAIN_1401	0.080	0.070	5.0m 5.0m 3.0m	0.065	28.0m 28.0m 10.0m	-80 90 90		30	30	10	7	15		60	60	30	5	18
IND_AU_DOMAIN_1403	0.060	0.070	5.0m 5.0m 5.0m	0.072	35.0m 35.0m 35.0m	90 0 0		30	30	30	7	15		60	60	60	5	18
BT_AU_DOMAIN_1000HG	3.002	2.670	24.0m 10.0m 10.0m	2.623	50.0m 40.0m 30.0m	-90 90 90		110	70	30	5	16		220	140	605	20	
BT_AU_DOMAIN_1000LG	0.004	0.011	24.0m 10.0m 10.0m	0.009	50.0m 40.0m 30.0m	-90 90 90		80	55	25	5	16		160	110	45	5	20
BT_AU_DOMAIN_1101HG	17.708	30.867	5.0m 5.0m 3.0m	32.000	20.0m 20.0m 10.0m	255 110 -105		60	45	15	5	15		110	75	45	5	18
BT_AU_DOMAIN_1101LG	0.653	1.447	5.0m 5.0m 3.0m	1.487	20.0m 20.0m 10.0m	255 110 -105		60	45	15	5	15		100	65	35	5	18
BT_AU_DOMAIN_1102	7.013	10.068	9.0m 9.0m 5.0m	6.986	30.0m 30.0m 10.0m	-80 105 100		30	30	15	5	15		85	85	50	5	18
BT_AU_DOMAIN_1103	7.595	7.223	10.0m 10.0m 5.0m	7.643	30.0m 30.0m 10.0m	-80 105 100		30	30	15	5	15		85	85	50	5	18
BT_AU_DOMAIN_1105	0.065	0.081	10.0m 10.0m 5.0m	0.060	30.0m 30.0m 10.0m	-80 105 100		30	30	15	5	15		85	85	50	5	18
BT_AU_DOMAIN_1106	0.242	0.257	10.0m 10.0m 5.0m	0.184	30.0m 30.0m 10.0m	-80 105 100		30	30	15	5	15		85	85	50	5	18
BT_AU_DOMAIN_1201HG	18.236	15.952	5.0m 5.0m 5.0m	10.450	30.0m 30.0m 10.0m	-90 90 55		60	45	15	5	12		100	65	35	5	16

Table 11: Varigram and Search parameters – Gold

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector	Search 2	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
BT_AU_DOMAIN_1201LG	0.059	0.062	5.0m 5.0m 5.0m	0.045	30.0m 30.0m 10.0m	-90 90 55		60	45	15	5	12		100	65	35	5	16
BT_AU_DOMAIN_1202	8.783	4.813	5.0m 5.0m 5.0m	5.316	28.0m 28.0m 12.0m	250 95 90		30	30	15	5	18		85	85	50	5	24
BT_AU_DOMAIN_1203HG	24.516	19.561	5.0m 5.0m 5.0m	13.009	20.0m 20.0m 10.0m	-80 80 170		40	40	15	5	12		80	80	30	5	16
BT_AU_DOMAIN_1203LG	0.404	0.418	5.0m 5.0m 5.0m	0.282	20.0m 20.0m 10.0m	-80 80 170		40	40	15	5	12		80	80	30	5	16
BT_AU_DOMAIN_1204HG	35.793	26.112	15.0m 12.0m 5.0m	53.959	75.0m 35.0m 10.0m	-75 100 90		40	40	15	5	15		80	80	30	5	16
BT_AU_DOMAIN_1204LG	0.237	0.174	15.0m 12.0m 5.0m	0.449	75.0m 35.0m 10.0m	-75 100 90		40	40	15	5	15		80	80	30	5	16
BT_AU_DOMAIN_1205	12.964	7.894	5.0m 5.0m 5.0m	10.554	38.0m 38.0m 12.0m	250 95 90		30	30	15	5	18		85	85	50	5	24
BT_AU_DOMAIN_1206HG	36.794	33.697	5.0m 5.0m 5.0m	19.503	25.0m 25.0m 10.0m	105 90 100		25	25	10	7	15		70	70	50	5	16
BT_AU_DOMAIN_1206LG	0.243	0.279	5.0m 5.0m 5.0m	0.203	25.0m 25.0m 10.0m	105 90 100		25	25	10	7	15		70	70	50	5	16
BT_AU_DOMAIN_1207	54.430	22.287	5.0m 5.0m 5.0m	24.876	30.0m 30.0m 12.0m	250 95 90		30	30	15	5	18		85	85	50	5	24
BT_AU_DOMAIN_1208	20.174	10.421	5.0m 5.0m 5.0m	16.076	38.0m 38.0m 12.0m	250 95 90		30	30	15	5	18		85	85	50	5	24
BT_AU_DOMAIN_1209HG	4.716	4.520	5.0m 5.0m 5.0m	3.037	25.0m 25.0m 10.0m	-90 90 90		30	30	10	6	12		90	90	50	5	16
BT_AU_DOMAIN_1209LG	0.019	0.028	5.0m 5.0m 5.0m	0.021	25.0m 25.0m 10.0m	-90 90 90		30	30	10	6	12		90	90	50	5	16
BT_AU_DOMAIN_1210HG	6.506	5.814	5.0m 5.0m 5.0m	3.628	30.0m 30.0m 10.0m	-90 90 90		30	30	10	6	12		60	60	25	5	16
BT_AU_DOMAIN_1210LG	0.032	0.031	5.0m 5.0m 5.0m	0.022	30.0m 30.0m 10.0m	-90 90 90		30	30	10	6	12		60	60	25	5	16
BT_AU_DOMAIN_1211	4.572	4.016	7.0m 7.0m 7.0m	2.432	25.0m 25.0m 25.0m	0 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1212	5.673	4.463	7.0m 7.0m 7.0m	2.424	25.0m 25.0m 25.0m	0 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1213	0.039	0.055	7.0m 7.0m 7.0m	0.047	25.0m 25.0m 25.0m	0 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1301	0.448	0.402	7.0m 7.0m 7.0m	0.217	30.0m 30.0m 30.0m	90 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1302HG	20.331	17.956	5.0m 5.0m 5.0m	22.208	22.0m 22.0m 10.0m	-85 100 90		30	30	10	6	15		90	90	50	5	18
BT_AU_DOMAIN_1302LG	0.029	0.039	5.0m 5.0m 5.0m	0.064	28.0m 28.0m 10.0m	-85 100 90		30	30	10	6	15		90	90	50	5	18
BT_AU_DOMAIN_1303	44.252	47.484	7.0m 7.0m 5.0m	34.493	48.0m 48.0m 10.0m	-80 95 90		30	30	8	5	16		60	60	15	5	18
BT_AU_DOMAIN_1304HG	23.022	18.161	8.0m 8.0m 8.0m	45.353	45.0m 45.0m 45.0m	90 0 0		30	30	3	6	15		60	60	60	5	18
BT_AU_DOMAIN_1304LG	0.066	0.058	8.0m 8.0m 8.0m	0.166	45.0m 45.0m 45.0m	90 0 0		30	30	3	6	15		60	60	60	5	18
BT_AU_DOMAIN_1305	0.079	0.095	7.0m 7.0m 7.0m	0.069	30.0m 30.0m 30.0m	90 0 0		20	20	20	5	18		85	85	85	5	24

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector	Search 2	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
BT_AU_DOMAIN_1307	0.010	0.012	7.0m 7.0m 7.0m	0.009	30.0m 30.0m 30.0m	90 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1401HG	57.197	29.637	5.0m 5.0m 4.0m	39.237	25.0m 25.0m 8.0m	-80 90 90		30	30	10	7	15		60	60	30	5	18
BT_AU_DOMAIN_1401LG	0.048	0.077	5.0m 5.0m 4.0m	0.096	30.0m 30.0m 10.0m	-80 90 90		30	30	10	7	15		60	60	30	5	18
BT_AU_DOMAIN_1402	0.121	0.142	5.0m 5.0m 5.0m	0.104	30.0m 30.0m 30.0m	90 0 0		20	20	20	5	18		85	85	85	5	24
BT_AU_DOMAIN_1403HG	0.438	0.225	5.0m 5.0m 5.0m	0.284	33.0m 33.0m 33.0m	90 0 0		30	30	30	7	15		60	60	60	5	18
BT_AU_DOMAIN_1403LG	0.016	0.018	8.0m 8.0m 8.0m	0.014	33.0m 33.0m 33.0m	90 0 0		30	30	30	7	15		75	75	75	5	18

Table 12: Search parameters – OK indicator estimate – copper

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X- Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium	Sarch 7	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
IND_CU_DOMAIN_1000	0.076	0.012	5.0m 5.0m 5.0m	0.039	18.0m 13.0m 13.0m	240 90 80		45	20	15	7	17		80	30	25	7	20
IND_CU_DOMAIN_1101	0.100	0.080	4.0m 4.0m 4.0m	0.048	33.0m 33.0m 11.0m	-65 110 90		40	40	15	8	20		80	80	40	6	23
IND_CU_DOMAIN_1102	0.040	0.040	5.0m 5.0m 5.0m	0.043	24.0m 24.0m 24.0m	90 0 0		30	30	30	8	20		60	60	60	6	23
IND_CU_DOMAIN_1103	0.100	0.040	3.0m 3.0m 3.0m	0.110	20.0m 20.0m 20.0m	90 0 0		30	30	30	8	20		60	60	60	6	23
IND_CU_DOMAIN_1106	0.070	0.050	3.0m 3.0m 3.0m	0.120	16.0m 16.0m 8.0m	255 115 90		35	35	15	8	20		60	60	40	6	23
IND_CU_DOMAIN_1106	0.070	0.050	3.0m 3.0m 3.0m	0.120	16.0m 16.0m 8.0m	-90 90 45		35	35	15	8	20		80	80	40	6	23
IND_CU_DOMAIN_1202	0.100	0.090	4.0m 4.0m 2.0m	0.055	19.0m 19.0m 7.0m	-90 105 90		35	35	15	9	19		80	80	40	7	22
IND_CU_DOMAIN_1204	0.070	0.050	6.0m 6.0m 6.0m	0.048	20.0m 20.0m 20.0m	90 0 0		30	30	30	7	24		60	60	60	7	28
IND_CU_DOMAIN_1205	0.070	0.075	4.0m 4.0m 4.0m	0.070	28.0m 28.0m 28.0m	90 0 0		30	30	30	9	19		60	60	60	7	22
IND_CU_DOMAIN_1206	0.040	0.033	11.0m 11.0m 2.0m	0.080	47.0m 30.0m 5.0m	-90 115 20		35	28	15	7	24		70	50	30	7	28
IND_CU_DOMAIN_1207	0.080	0.043	4.0m 4.0m 4.0m	0.060	29.0m 29.0m 29.0m	90 0 0		30	30	30	8	20		80	80	80	6	24
IND_CU_DOMAIN_1208	0.070	0.050	4.0m 4.0m 3.0m	0.037	33.0m 33.0m 10.0m	-90 100 90		30	30	15	8	20		80	80	35	6	24
IND_CU_DOMAIN_1209	0.080	0.060	4.0m 4.0m 4.0m	0.036	18.0m 18.0m 18.0m	90 0 0		30	30	30	9	21		70	70	70	6	25
IND_CU_DOMAIN_1211	0.060	0.060	5.0m 5.0m 5.0m	0.084	30.0m 30.0m 30.0m	90 0 0		35	35	35	9	19		80	80	80	7	22
IND_CU_DOMAIN_1302	0.140	0.060	4.0m 4.0m 4.0m	0.031	15.0m 15.0m 15.0m	90 0 0		30	30	30	7	21		60	60	60	7	25
IND_CU_DOMAIN_1303	0.055	0.050	2.0m 2.0m 2.0m	0.130	16.0m 16.0m 16.0m	90 0 0		30	30	30	7	21		45	45	45	7	25
IND_CU_DOMAIN_1305	0.070	0.090	5.0m 5.0m 5.0m	0.050	20.0m 20.0m 10.0m	-90 90 150		30	30	12	7	21		75	75	45	7	25
IND_CU_DOMAIN_1306	0.100	0.060	3.0m 3.0m 3.0m	0.090	15.0m 15.0m 15.0m	90 0 0		30	30	30	7	21		60	60	60	7	25
IND_CU_DOMAIN_1401	0.090	0.040	3.0m 3.0m 3.0m	0.098	20.0m 20.0m 20.0m	90 0 0		30	30	30	9	20		60	60	60	7	24
IND_CU_DOMAIN_1402	0.080	0.120	6.0m 6.0m 6.0m	0.050	36.0m 36.0m 36.0m	90 0 0		35	35	35	9	20		75	75	75	7	24
BT_CU_DOMAIN_1000HG	9632486.768	4182680.884	5.0m 5.0m 5.0m	1085059.755	18.0m 13.0m 13.0m	240 90 80		45	20	15	7	17		80	30	25	7	20
BT_CU_DOMAIN_1000LG	69382.009	159266.072	5.0m 5.0m 5.0m	110883.072	18.0m 13.0m 13.0m	240 90 80		45	20	15	7	17		80	30	25	7	20
BT CU DOMAIN 1101HG	24628242.59 9	34687051.58 2	4.0m 4.0m 4.0m	23439792.81 2	33.0m 33.0m 11.0m	-65 110 90		40	40	15	8	20		80	80	40	6	23
BT_CU_DOMAIN_110116	1286238 749	2610538 553	4.0m 4.0m 4.0m	1963091 767	33.0m 33.0m 11.0m	-65 110 90		40	40	15	8	20		80	80	40	6	23
	14906220.48	12359999.25		15532137.25		35 110 50				15		20		00				
BT_CU_DOMAIN_1102HG	0	4	5.0m 5.0m 5.0m	6	24.0m 24.0m 24.0m	90 0 0		30	30	30	8	20		60	60	60	6	23

	Nugget					Rotation (A+X-	Search 1	Major	Semi	Minor	in Samples	Optimium mulec Der	Search 7	Major	Semi	Minor	in Samples	Optimium amples Per Sector
Domain		Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Z)					Σ	- ù			10	10	≥	° S
BT_CU_DOMAIN_1102LG	27773.851	20581.254	5.0m 5.0m 5.0m	25941.487	24.0m 24.0m 24.0m	90 0 0		30	30	30	5	20		100	0	0	4	23
BT_CU_DOMAIN_1103HG	1619951.799	1305055.476	6.0m 6.0m 6.0m	2528020.646	20.0m 20.0m 20.0m	90 0 0		30	30	30	8	20		80	80	80	6	23
BT_CU_DOMAIN_1103LG	713490.140	604756.811	6.0m 6.0m 6.0m	1029203.228	20.0m 20.0m 20.0m	90 0 0		30	30	30	8	20		80	80	80	6	23
BT CU DOMAIN 1104	9188335.444	20695870.26 7	6.0m 6.0m 6.0m	9225462.663	45.0m 45.0m 15.0m	-90 90 100		40	40	10	5	19		80	80	40	5	23
	17553229.03	35291070.94	· ·	14487596.76		· · ·												
BT_CU_DOMAIN_1105	8	5	6.0m 6.0m 6.0m	8	45.0m 45.0m 15.0m	-90 90 100		40	40	10	5	19		80	80	40	5	23
	213322504.9	122113656.4		103197459.4														
BT_CU_DOMAIN_1106HG	30	62	3.0m 3.0m 3.0m	49	16.0m 16.0m 8.0m	255 115 90		35	35	15	8	20		60	60	40	6	23
BT_CU_DOMAIN_1106LG	3643886.259	2573010.966	3.0m 3.0m 3.0m	2554160.109	16.0m 16.0m 8.0m	255 115 90		35	35	15	8	20		60	60	40	6	23
		20110696.55																
BT_CU_DOMAIN_1107	9756033.266	4	6.0m 6.0m 6.0m	9391539.348	45.0m 45.0m 15.0m	-90 90 100		40	40	10	9	14		80	80	40	8	14
DT CU DOMAIN 1109	116/5820.05	22041388.46		0720007 250	45.0m 45.0m 15.0m	00 00 100		40	40	10		10		00	00	40	F	20
BI_CO_DOMAIN_1108	502222066 1	4	0.011 0.011 0.011	22282206 0	43:011 43:011 13:011	-90 90 100		40	40	10	0	19		80	80	40	5	20
BT CU DOMAIN 1109HG	33	72	40m 40m 40m	22/882/90.9	30.0m 30.0m 10.0m	-90 90 45		35	35	15	8	20		80	80	40	6	23
	19479888 78	12430270 54		11853798.00		50 50 15		55	55	15	Ŭ	20		00	00	10	Ŭ	23
BT CU DOMAIN 1109LG	6	8	4.0m 4.0m 4.0m	1	30.0m 30.0m 10.0m	-90 90 45		35	35	15	8	20		80	80	40	6	23
	44077571.06	79785583.97	· ·	33096200.26														
BT_CU_DOMAIN_1110	8	3	6.0m 6.0m 6.0m	2	45.0m 45.0m 15.0m	-90 90 100		40	40	10	8	17		80	80	40	6	17
	27164378.44	56548328.33		25102200.37														
BT_CU_DOMAIN_1111	7	1	6.0m 6.0m 6.0m	6	45.0m 45.0m 15.0m	-90 90 100		40	40	10	8	12		80	80	40	6	12
		15150592.98																
BT_CU_DOMAIN_1112	7388217.383	7	6.0m 6.0m 6.0m	6958054.689	45.0m 45.0m 15.0m	-90 90 100		40	40	10	8	12		80	80	40	6	12
BT CU DOMAIN 1113	6027280.506	12956153.15 2	6.0m 6.0m 6.0m	5727796.407	45.0m 45.0m 15.0m	-90 90 100		40	40	10	8	18		80	80	40	5	18
	20775107.68	40989215.95		17747658.61							-						-	
BT_CU_DOMAIN_1114	3	9	6.0m 6.0m 6.0m	1	45.0m 45.0m 15.0m	-90 90 100		40	40	10	8	19		80	80	40	6	20
	32026144.32	35217723.40		27010598.91														
BT_CU_DOMAIN_1201	3	5	2.0m 2.0m 2.0m	1	12.0m 12.0m 12.0m	90 0 0		25	25	25	8	18		60	60	60	6	22
	29112121.61	25547831.51		30723596.32														
BT_CU_DOMAIN_1202HG	3	7	4.0m 4.0m 2.0m	1	25.0m 25.0m 7.0m	-90 105 90		35	35	15	9	19		80	80	40	7	22
BT_CU_DOMAIN_1202LG	3409160.158	2309064.408	4.0m 4.0m 2.0m	2247790.933	19.0m 19.0m 7.0m	-90 105 90		35	35	15	9	19		80	80	40	7	22
	13751271.20	15140394.57		11908670.59							_							
BT_CU_DOMAIN_1203	1	7	2.0m 2.0m 2.0m	5	12.0m 12.0m 12.0m	90 0 0		25	25	25	8	18		60	60	60	6	22
BT_CU_DOMAIN_1204HG	11436535.61 2	9229416.361	6.0m 6.0m 6.0m	6895749.995	25.0m 25.0m 25.0m	90 0 0		30	30	30	7	24		60	60	60	7	28
BT_CU_DOMAIN_1204LG	672262.212	992589.870	6.0m 6.0m 6.0m	634369.550	25.0m 25.0m 25.0m	90 0 0		30	30	30	7	24		60	60	60	7	28

BT CU. DOMANI. 120516 22.70306.33 5.0m 5.0m 5.0m 5.0m 5.0m 6.0m 4.5.0m 4.5.0m 4.5.0m 4.5.m 5.0m	Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X- Z)	Major	Semi	Minor	Min Samples	Optimium Samulae Bar	Search 2 Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
TCU_DOMAN DOMAN SOM		21709308.33			15026635.95												
S12 CU DOMAN 120510 3537 253.02 7859 225.07 7859 225.07 7859 225.07 7890 200	BT_CU_DOMAIN_1205HG	2	8928605.907	5.0m 5.0m 5.0m	0	45.0m 45.0m 45.0m	90 0 0	45	45	45	7	19	90	90	90	7	22
BT_CU_DOMAIN_1208H0 1 4 11.0m 11.0m 10m 0 47.0m 30.0m 5.0m -90 115 20 35 28 15 7 24 85 65 45 7 28 BT_CU_DOMAIN_120816 744883366 653695.757 11.0m 11.0m 20m 595837.43 47.0m 30.0m 50m -90 115 20 35 28 15 7 24 85 65 45 7 28 BT_CU_DOMAIN_1207H6 7 5 4.0m 4.0m 4.0m 4.0m 90	BT_CU_DOMAIN_1205LG	3532163.042	2859236.505	5.0m 5.0m 5.0m	3296543.477	40.0m 40.0m 40.0m	90 0 0	45	45	45	7	19	90	90	90	7	22
BT_CU_DOMAIN_120816 1 4 11.0m 1.0m 0 47.0m 30.0m 5.0m -90 115 20 35 28 15 7 24 75 56 56 57 21 BT_CU_DOMAIN_120816 74.8883.96 6630695757 11.0m 1.0m 2.0m 23744192.95 23.0m 29.0m 29.0m 29.0m 90 00 30 30 8 20 80 80 80 6 24. BT_CU_DOMAIN_120716 173305.54 84.1293.393 4.0m 4.0m 4.0m 99 90.0 90.0 90.0 30 30 8 20 80 80 80 6 24. BT_CU_DOMAIN_120816 666559320 944440.726 4.0m 4.0m 3.0m 79286.612 35.0m 30.0m 90.100 90 30		29974827.79	25932320.47		18019446.05												
BT_CU_DOMAN_120EG 744883.396 663695.757 11.0m 1.1m 1.1m 1.2m 234533.743 47.0m 30.0m 5.0m 90 10 33 28 15 7 24 85 65 45 7 28 BT_CU_DOMAN_1207H6 7 5 4.0m 4.0m 4.0m 11 29.0m 29.0m 29.0m 90 10 30 30 8 20 80 80 6 24 BT_CU_DOMAN_1202H6 0 33 841073.0% 30 841073.0% 30 80 80 80 6 24 BT_CU_DOMAN_1208L6 665532.00 344407.26 4.0m 4.0m 30 95 70.0m 90 90 90 90 90 30 30 30 15 8 0 60	BT_CU_DOMAIN_1206HG	1	4	11.0m 11.0m 2.0m	0	47.0m 30.0m 5.0m	-90 115 20	35	28	15	7	24	70	50	30	7	28
BT_CU_DOMAIN_120716 7 5 4.0m 4.0m 4.0m 94.0m 99.0m 99.0m 90.0m 30 30 8 20 80 80 6 24 BT_CU_DOMAIN_120716 1153390.594 841293.993 4.0m 4.0m 4.0m 964375.385 29.0m 29.0m 90.0 10.0 30 30 30 8 20 80 80 6 24 BT_CU_DOMAIN_120816 0 3 4.0m 4.0m 3.0m 3.0m 5.0m 10.0m -90.10.0 190 30 30 15 8 20 80 80 6 24 BT_CU_DOMAIN_120816 0 3 4.0m 4.0m 3.0m 3.0m 3.0m 90.10.0 30 30 30 90 94 5 5 24 BT_CU_DOMAIN 120816 606559.320 44440.7205.17 1164942468.2 120m 12.0m 12.0m 12.0m 90.0 90.0 10.0 30 30 30 9 21 7.0 70 70 6 25 25 <t< td=""><td>BT_CU_DOMAIN_1206LG</td><td>744888.396</td><td>663695.757</td><td>11.0m 11.0m 2.0m</td><td>536583.743</td><td>47.0m 30.0m 5.0m</td><td>-90 115 20</td><td>35</td><td>28</td><td>15</td><td>7</td><td>24</td><td>85</td><td>65</td><td>45</td><td>7</td><td>28</td></t<>	BT_CU_DOMAIN_1206LG	744888.396	663695.757	11.0m 11.0m 2.0m	536583.743	47.0m 30.0m 5.0m	-90 115 20	35	28	15	7	24	85	65	45	7	28
BT_CU_DOMAIN_1207LG 1153390.594 84.1293.993 4.0m 4.0m 964375.385 29.0m 29.0m 90 0 0 30 30 8 20 80 80 60 24 BT_CU_DOMAIN_1208H6 0 3 4.0m 4.0m 3.0m 3.0m 3.0.0m 3	BT_CU_DOMAIN_1207HG	29527572.51 7	21905880.65 5	4.0m 4.0m 4.0m	23744192.95 1	29.0m 29.0m 29.0m	90 0 0	30	30	30	8	20	80	80	80	6	24
Se67875.07.9 5721752.62.2 37245756.72 3345596.72 3454596.72 300m 30.0m 30.0m 30.0m 10.0m -90 100 90 30 30 15 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 8 20 90 90 45 6 24 19565713.07 16475205.17 - 127462482 - 1200m 20.0m 20.0m 20.0m 20.0m 20.0m 90 0 30 30 30 9 21 85	BT_CU_DOMAIN_1207LG	1153390.594	841293.993	4.0m 4.0m 4.0m	964375.385	29.0m 29.0m 29.0m	90 0 0	30	30	30	8	20	80	80	80	6	24
BT_CU_DOMAIN_1208HG 0 3 4.0m 4.0m 3.0m 9 30.0m 10.0m -90 100 90 30 30 15 8 20 80 80 80 85 6 24 BT_CU_DOMAIN 1208HG 666559320 944440.726 4.0m 4.0m 30 79928.612 35.0m 10.0m -90 100 90 30 30 15 8 20 80 80 85 6 24 BT_CU_DOMAIN 1208HG 7 88 4.0m 4.0m 1124762468 45.0m 90 0 30 30 30 9 21 7 70 70 70 6 25 BT_CU_DOMAIN 1208HG 600046258 63839368 4.0m 4.0m 1164914.465 45.0m 95.0m 90 0 <th< td=""><td></td><td>56678750.79</td><td>57217526.42</td><td></td><td>35455967.67</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		56678750.79	57217526.42		35455967.67												
BT_CU_DOMAIN_1208L6 666559.320 944440.726 4.0m 4.0m 3.0m 79286.612 35.0m 35.0m 10.0m -90 100 90 30 30 15 8 20 90 90 45 6 24 BT_CU_DOMAIN_1209L6 7 8 4.0m 4.0m 4.0m 1164941.465 45.0m 90 0 0 30 30 30 90 21 85 85 85 85 6 25 BT_CU_DOMAIN_1209L6 600046.258 638383.368 4.0m 4.0m 1164941.465 45.0m 45.0m 90 0 0 2.5 25 8 8 60 60 60 62 22 BT_CU_DOMAIN_1210 2 7 2.0m 2.0m 2.0m 8 30.0m 30.0m 90 0 0 45 45 7 19 120 0 5 22 BT_CU_DOMAIN_1210 2 7 36.30 5.0m 5.0m 8 30.0m 30.0m 30.0m 90 0 0 45 45 7 19 120 0 5 2	BT_CU_DOMAIN_1208HG	0	3	4.0m 4.0m 3.0m	9	30.0m 30.0m 10.0m	-90 100 90	30	30	15	8	20	80	80	35	6	24
Instant 200MAIN 1200HG 119565113.07 16475205.17 1274624682 20.0m 20.0m 20.0m 20.0m 90 0 0 0 9 21 70	BT_CU_DOMAIN_1208LG	666559.320	944440.726	4.0m 4.0m 3.0m	799286.612	35.0m 35.0m 10.0m	-90 100 90	30	30	15	8	20	90	90	45	6	24
BT_CU_DOMAIN_1209H6 7 8 4.0m 4.0m 1 20.0m 20.0m 20.0m 90 0 0 30 30 30 90 21 70		19565713.07	16475205.17		12746246.82												
BT_CU_DOMAIN_1209LG 600046.258 638839.368 4.0m 4.0m 4.0m 1164941.465 45.0m 45.0m 45.0m 90 0 0 30 30 30 90 21 85 85 65 25 BT_CU_DOMAIN_1210 2 7 2.0m 2.0m 2.0m 4 12.0m 12.0m 12.0m 90 0 0 4 5 8 18 60 60 6 2 BT_CU_DOMAIN_1211H 4 6 5.0m 5.0m 5.0m 8 30.0m 30.0m 90 0 0 45 45 7 19 12.0 0 0 5 22 BT_CU_DOMAIN_1211G 5504259.274 367338.038 5.0m 5.0m 5.0m 3590610.462 30.0m 30.0m 30.0m 90 0 0 45 45 45 7 19 12.0 0 0 2 2 8 8 90 90 90 0 2 2 2 8 8 8 90 90 90 6 2 2 2 8 8<	BT_CU_DOMAIN_1209HG	7	8	4.0m 4.0m 4.0m	1	20.0m 20.0m 20.0m	90 0 0	30	30	30	9	21	70	70	70	6	25
35521089.15 32951218.32 2 Zedm Zedm Zedm Zedm Zedm Ledm 12.0m 12.0m 90<00 25 25 25 8 60 60 60 62 22 BT_CU_DOMAIN 1211H6 4 6 5.0m 5.0m 5.0m 8 30.0m 30.0m 30.0m 90<0	BT_CU_DOMAIN_1209LG	600046.258	638839.368	4.0m 4.0m 4.0m	1164941.465	45.0m 45.0m 45.0m	90 0 0	30	30	30	9	21	85	85	85	6	25
BT_CU_DOMAIN_1210 2 7 2.0m 2.0m 2.0m 4 12.0m 12.0m 12.0m 90 0 0 25 25 8 18 6 60 50 22 BT_CU_DOMAIN_12116 4 6 5.0m 5.0m 5.0m 3590610.462 30.0m 30.0m 30.0m 90 0 45		35521089.15	32951218.32		25459734.13												
BT_CU_DOMAIN_1211H6 48555182.00 -4497/849.35 -4497/849.35 -11 12 <td>BT_CU_DOMAIN_1210</td> <td>2</td> <td>7</td> <td>2.0m 2.0m 2.0m</td> <td>4</td> <td>12.0m 12.0m 12.0m</td> <td>90 0 0</td> <td>25</td> <td>25</td> <td>25</td> <td>8</td> <td>18</td> <td>60</td> <td>60</td> <td>60</td> <td>6</td> <td>22</td>	BT_CU_DOMAIN_1210	2	7	2.0m 2.0m 2.0m	4	12.0m 12.0m 12.0m	90 0 0	25	25	25	8	18	60	60	60	6	22
B1_C0_D0MAIN_1211RG 4 6 3.0m 3.0m 5.0m 5.0m 3.0m 30.0m 30.0m 30.0m 90 0 0 43	DT CUL DOMAIN 1211UC	526/1888.51	48555132.00		449/8649.53	20.0m 20.0m 20.0m	00 0 0	45	45	45	7	10	120	12	12	-	22
BT_CU_DOMAIN_1211IG 3504259.274 3673384.038 5.0m 5.0m 5.0m 5.0m 5.0m 359610.462 30.0m 30.0m 30.0m 90 0 4.5 4.5 7 19 12	BI_CO_DOMAIN_1211HG	4	0	5.011 5.011 5.011	0	30.011 30.011 30.011	901010	45	45	45	/	19	120	12	12	5	
BT_CU_DOMAIN_1212 80756182.83 75402769.58 2.0m 2.0m 2.0m 5 12.0m 12.0m 90 0 0 0 25 26 25 25 25 26 25 25 25 26 25 25 26 25 25	BT_CU_DOMAIN_1211LG	3504259.274	3673384.038	5.0m 5.0m 5.0m	3590610.462	30.0m 30.0m 30.0m	90 0 0	45	45	45	7	19	120	0	0	5	22
BT_CU_DOMAIN_1212 9 4 2.0m 2.0m 2.0m 5 12.0m 12.0m 12.0m 12.0m 12.0m 0 0 0 90 <td></td> <td>80756182.83</td> <td>75402769.58</td> <td></td> <td>52517340.82</td> <td></td>		80756182.83	75402769.58		52517340.82												
T4420929.33 116262873.5	BT_CU_DOMAIN_1212	9	4	2.0m 2.0m 2.0m	5	12.0m 12.0m 12.0m	90 0 0	25	25	25	8	18	90	90	90	6	22
BT_CU_DOMAIN_1301 1 96 3.0m 3.0m 3.0m 6 21.0m 21.0m 11.0m -60 90 80 25 25 10 7 23 60 60 25 25 10 7 23 60 60 25 25 10 7 23 60 60 25 25 10 7 23 60 60 25 25 25 10 7 23 60 60 25 25 26 10 7 23 60 60 25 5 26 BT_CU_DOMAIN_1302HG 3621582.839 3483166.699 4.0m 4.0m 4.0m 6813667.003 23.0m 23.0m 23.0m 90 0 0 30 30 30 7 21 60 60 60 60 7 25 BT_CU_DOMAIN_1303HG 7 4 4.0m 4.0m 4.0m 11 25.0m 25.0m 90 0 30 30 30 30 7 21 60 60 60 7 </td <td></td> <td>74420929.33</td> <td>116262873.5</td> <td></td> <td>64633196.48</td> <td></td>		74420929.33	116262873.5		64633196.48												
29215739.62 25287147.58	BT_CU_DOMAIN_1301	1	96	3.0m 3.0m 3.0m	6	21.0m 21.0m 11.0m	-60 90 80	25	25	10	7	23	60	60	25	5	26
BT_CU_DOMAIN_I302LG 3 0 4.0m 4.0m 4.0m 3 15.0m 15.0m 15.0m 90 0 0 0 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I302LG 3621582.839 3483166.699 4.0m 4.0m 6813667.003 23.0m 23.0m 90 0 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I303LG 3621582.839 3483166.699 4.0m 4.0m 4.0m 11 25.0m 25.0m 90 0 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m		29215739.62	25287147.58		19913485.18	15.0		20	20	20	_	24	60	60	60	_	25
BT_CU_DOMAIN_1302LG 3621582.839 3483166.699 4.0m 4.0m 4.0m 6813667.003 23.0m 23.0m 23.0m 90 0 0 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1303HG 7 4 4.0m 4.0m 4.0m 11 25.0m 25.0m 90 0 0 30 30 30 7 21 60 60 60 60 60 60 60 60 60 60 60 60 60 7 25 BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 90 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 90 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1304 4 7 3.0m 3.0m <td>BI_CU_DOMAIN_1302HG</td> <td>3</td> <td>0</td> <td>4.0m 4.0m 4.0m</td> <td>3</td> <td>15.0m 15.0m 15.0m</td> <td>90 0 0</td> <td>30</td> <td>30</td> <td>30</td> <td>/</td> <td>21</td> <td>60</td> <td>60</td> <td>60</td> <td>/</td> <td>25</td>	BI_CU_DOMAIN_1302HG	3	0	4.0m 4.0m 4.0m	3	15.0m 15.0m 15.0m	90 0 0	30	30	30	/	21	60	60	60	/	25
69690452.69 63555752.90 4.0m 4.0m 4.0m 4.0m 11 25.0m 25.0m 90 0 0 30 30 30 7 21 60 60 60 7 25.0m BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 30.0m 30.0m 30 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_1304 4 7 3.0m 3.0m 3 21.0m 11.0m -60 90 90 50 20	BT_CU_DOMAIN_1302LG	3621582.839	3483166.699	4.0m 4.0m 4.0m	6813667.003	23.0m 23.0m 23.0m	90 0 0	30	30	30	7	21	60	60	60	7	25
BT_CU_DOMAIN_I303LG 2759888.861 2822799.444 4.0m 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 90 0 0 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I303LG 2759888.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 90 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I303LG 2759388.861 2822799.444 4.0m 4.0m 2749529.204 30.0m 30.0m 30.0m 90 0 0 30 30 30 7 21 60 60 60 7 25 BT_CU_DOMAIN_I304 4 7 3.0m		69690452.69	63555752.90	40m 40m 40m	151078707.6	25.0m 25.0m 25.0m	001010	20	20	20	7	21	60	60	60	7	25
BT_CU_DOMAIN_1303LG 2759888.861 2822799.444 4.0m 4.0m 4.0m 2749529.204 30.0m 30.0m 90 0 0 30 30 7 21 60 60 60 7 25 37793921.55 71937030.80 4 4.0m 3.0m 3.0m 3.0m 21.0m 21.0m 10.0m -60 90 0 0 7 21 60 60 60 60 7 25 BT_CU_DOMAIN_1304 4 7 3.0m 3.0m 3.0m 3.0m 3.0m 3.0m 3.0m 21.0m 21.0m 11.0m -60 90 80 25 25 10 7 23 50 50 20 50 50 20 50 </td <td></td> <td>/</td> <td>4</td> <td>4.011 4.011 4.011</td> <td>11</td> <td>23.011 23.011 23.011</td> <td>901010</td> <td>50</td> <td>50</td> <td>50</td> <td></td> <td>21</td> <td>00</td> <td>00</td> <td>00</td> <td>/</td> <td>25</td>		/	4	4.011 4.011 4.011	11	23.011 23.011 23.011	901010	50	50	50		21	00	00	00	/	25
37/93921.55 7/93/030.80	BT_CU_DOMAIN_1303LG	2759888.861	2822799.444	4.0m 4.0m 4.0m	2749529.204	30.0m 30.0m 30.0m	90 0 0	30	30	30	7	21	60	60	60	7	25
BT_CU_DOMAIN_1305HG 2840240.528 5188194.523 5.0m 5.0m </td <td>PT CH DOMAIN 1204</td> <td>37793921.55</td> <td>/193/030.80</td> <td>20m 20m 20m</td> <td>43805446.08</td> <td>21 0m 21 0m 11 0m</td> <td>60 1 00 1 80</td> <td>25</td> <td>25</td> <td>10</td> <td>~</td> <td>22</td> <td>50</td> <td>50</td> <td>20</td> <td>F</td> <td>26</td>	PT CH DOMAIN 1204	37793921.55	/193/030.80	20m 20m 20m	43805446.08	21 0m 21 0m 11 0m	60 1 00 1 80	25	25	10	~	22	50	50	20	F	26
BT_CU_DOMAIN_1305HG 2840240.528 5188194.523 5.0m 5.0m 5.0m 5.0m 5.0m 5094140.464 40.0m 40.0m 10.0m -90 90 150 30 30 12 7 21 90 90 55 7 25	BI_CU_DUIVIAIN_1304	4	/ 249902016 E	3.0m 3.0m 3.0m	3 286600666 F	21.0m 21.0m 11.0m	-00 90 80	25	25	10	/	23	50	50	20	5	20
BT CU DOMAIN 1305LG 2840240.528 5188194.523 5.0m 5.0m 5.0m 5094140.464 40.0m 40.0m 10.0m -90 90 150 30 30 12 7 21 90 90 55 7 25	BT_CU_DOMAIN_1305HG	38	60	5.0m 5.0m 5.0m	200099000.5	40.0m 40.0m 10.0m	-90 90 150	30	30	12	7	21	90	90	55	7	25
	BT CU DOMAIN 1305LG	2840240.528	5188194.523	5.0m 5.0m 5.0m	5094140.464	40.0m 40.0m 10.0m	-90 90 150	30	30	12	7	21	90	90	55	7	25

Domain	Nugget	Sill 1	Ra	nge 1 (m)		Sill 2	R	ange 2 (m)	1	Rotation (A+X- Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium	Search 2	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector
	102810098.1	62745740.25		0 ()		58440281.59		0 ()		,												
BT_CU_DOMAIN_1306HG	07	3	3.0m	3.0m	3.0m	9	15.0m	15.0m	15.0m	90 0 0		30	30	30	7	21		60	60	60	7	25
BT_CU_DOMAIN_1306LG	1880471.804	1275920.869	3.0m	3.0m	3.0m	1246352.946	15.0m	15.0m	15.0m	90 0 0		30	30	30	7	21		60	60	60	7	25
BT_CU_DOMAIN_1307	5762682.783	9825882.575	3.0m	3.0m	3.0m	6127159.429	21.0m	21.0m	11.0m	-60 90 80		25	25	10	7	23		50	50	20	5	26
BT CU DOMAIN 1308	3435337.652	7282262.352	3.0m l	3.0m l	3.0m	4942050.477	21.0m	21.0m	11.0m	-60 90 80		25	25	10	8	15		60	60	40	6	15
		18082714.78				11580209.10						-			-					-		
BT_CU_DOMAIN_1309	9426991.262	9	3.0m	3.0m	3.0m	5	21.0m	21.0m	11.0m	-60 90 80		25	25	10	7	23		60	60	40	5	26
	105005831.6	99704611.14				118551660.5																
BT_CU_DOMAIN_1401HG	85	8	3.0m	3.0m	3.0m	42	20.0m	20.0m	20.0m	90 0 0		30	30	30	9	20		80	80	80	7	24
		10334242.77																				
BT_CU_DOMAIN_1401LG	7622781.477	9	3.0m	3.0m	3.0m	8372595.889	27.0m	27.0m	27.0m	90 0 0		30	30	30	9	20		80	80	80	7	24
	0204262.044	6000404 400	5.0	5 Q	5.0	10739100.16	25.0	25.0	25.0			45	45	45	•	20		450	15	15	_	24
BI_CU_DOMAIN_1402HG	9201362.811	6899491.438	5.0m	5.0m	5.0m	0	35.0m	35.0m	35.0m	90 0 0		45	45	45	9	20		150	0	0		24
BT_CU_DOMAIN_1402LG	838634.845	1046561.078	5.0m	5.0m	5.0m	1228686.352	60.0m	60.0m	60.0m	90 0 0		45	45	45	9	20		160	0	16	7	24
	85258220.64	30927472.13				26577228.21																
BT_CU_DOMAIN_1403	4	7	6.0m	6.0m	6.0m	4	48.0m	48.0m	48.0m	90 0 0		35	35	35	8	24		60	60	60	6	26
	64645017.89	43561757.22				28569393.81																
BT_CU_DOMAIN_1404	2	5	6.0m	6.0m	6.0m	9	48.0m	48.0m	48.0m	90 0 0		35	35	35	8	17		60	60	60	6	17
	71679320.53	54620704.02				36660608.30																
BT_CU_DOMAIN_1405	1	4	6.0m	6.0m	6.0m	4	48.0m	48.0m	48.0m	90 0 0		35	35	35	8	24		60	60	60	6	27
	38352755.69	26106903.73				17334204.83																
BT_CU_DOMAIN_1406	1	8	6.0m	6.0m	6.0m	1	48.0m	48.0m	48.0m	90 0 0		35	35	35	8	24		60	60	60	6	26
	12884407.78																		10	10		
BT_CU_DOMAIN_1407	0	8799517.530	6.0m	6.0m	6.0m	6117296.529	48.0m	48.0m	48.0m	90 0 0		40	40	40	10	15		100	0	0	8	15

Table 13: Search parameters – OK indicator estimate – cobalt

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samulos Bor	Search 2	Major	Semi	Minor	Min Samples	Optimium Samalos Bor
IND_CO_DOMAIN_1101	0.050	0.070	3.0m 3.0m 3.0m	0.125	15.0m 15.0m 8.0m	-90 90 90		25	25	10	6	22		50	50	30	6	26
IND_CO_DOMAIN_1102	0.070	0.100	3.0m 3.0m 3.0m	0.065	16.0m 16.0m 16.0m	90 0 0		25	25	25	10	24		45	45	45	7	28
IND_CO_DOMAIN_1103	0.070	0.070	7.0m 7.0m 7.0m	0.085	19.0m 19.0m 19.0m	90 0 0		25	25	25	6	22		45	45	45	6	26
IND_CO_DOMAIN_1104	0.070	0.100	4.0m 4.0m 4.0m	0.078	25.0m 25.0m 25.0m	90 0 0		25	25	25	6	22		50	50	50	6	26
IND_CO_DOMAIN_1106	0.060	0.060	4.0m 4.0m 3.0m	0.105	30.0m 30.0m 9.0m	-80 115 90		30	30	10	10	24		65	65	40	7	28
IND_CO_DOMAIN_1205	0.040	0.042	4.0m 4.0m 4.0m	0.070	20.0m 20.0m 20.0m	90 0 0		25	25	25	7	24		65	65	65	6	28
IND_CO_DOMAIN_1206	0.045	0.050	5.0m 5.0m 5.0m	0.101	40.0m 40.0m 17.0m	-90 120 90		35	35	10	6	24		70	70	40	6	28
IND_CO_DOMAIN_1207	0.055	0.050	5.0m 5.0m 3.0m	0.142	16.0m 16.0m 10.0m	-90 90 90		25	25	10	6	24		65	65	30	6	28
IND_CO_DOMAIN_1210	0.050	0.100	5.0m 5.0m 5.0m	0.100	22.0m 22.0m 22.0m	90 0 0		25	25	25	6	24		50	50	50	6	28
IND_CO_DOMAIN_1211	0.060	0.110	6.0m 6.0m 6.0m	0.068	15.0m 15.0m 15.0m	90 0 0		25	25	25	6	24		80	80	80	6	28
IND_CO_DOMAIN_1212	0.070	0.090	10.0m 10.0m 10.0m	0.080	16.0m 16.0m 16.0m	90 0 0		25	25	25	6	24		100	100	100	6	28
IND_CO_DOMAIN_1301	0.025	0.035	5.0m 5.0m 5.0m	0.080	13.0m 13.0m 8.0m	-90 95 90		30	30	10	7	22		65	65	30	7	26
IND_CO_DOMAIN_1302	0.050	0.090	4.0m 4.0m 4.0m	0.110	10.0m 10.0m 10.0m	90 0 0		25	25	25	7	22		65	65	65	7	26
IND_CO_DOMAIN_1303	0.030	0.050	4.0m 4.0m 4.0m	0.154	20.0m 20.0m 20.0m	90 0 0		25	25	25	7	18		65	65	65	7	22
IND_CO_DOMAIN_1304	0.050	0.030	7.0m 7.0m 4.0m	0.160	34.0m 34.0m 5.0m	-90 100 90		30	30	10	7	18		75	75	40	7	22
IND_CO_DOMAIN_1402	0.020	0.060	5.0m 5.0m 4.0m	0.160	26.0m 26.0m 10.0m	-90 90 90		30	30	10	8	20		80	80	50	8	24
IND_CO_DOMAIN_1403	0.070	0.070	4.0m 4.0m 3.0m	0.105	16.0m 16.0m 7.0m	260 100 90		25	25	10	8	20		60	60	30	8	24
BT_CO_DOMAIN_1000	38026.970	152245.278	23.0m 20.0m 15.0m	12948.312	50.0m 43.0m 28.0m	270 80 70		45	20	15	6	24		80	25	20	6	28
BT_CO_DOMAIN_1101HG	8486.221	6120.475	3.0m 3.0m 3.0m	13258.685	15.0m 15.0m 8.0m	-90 90 90		25	25	10	6	22		70	70	45	6	26
BT_CO_DOMAIN_1101LG	3505.146	2589.086	3.0m 3.0m 3.0m	5911.427	25.0m 25.0m 8.0m	-90 90 90		25	25	10	6	22		70	70	45	6	26
BT_CO_DOMAIN_1102HG	126317.789	138901.739	3.0m 3.0m 3.0m	105662.983	16.0m 16.0m 16.0m	90 0 0		25	25	25	10	24		100	100	100	7	28
BT_CO_DOMAIN_1102LG	10392.579	10921.705	3.0m 3.0m 3.0m	8098.372	16.0m 16.0m 16.0m	90 0 0		25	25	25	10	24		100	100	100	7	28
BT_CO_DOMAIN_1103HG	14148.554	10646.474	4.0m 4.0m 4.0m	23582.273	15.0m 15.0m 15.0m	90 0 0		25	25	25	6	22		85	85	85	6	26
BT_CO_DOMAIN_1103LG	3455.067	1665.538	4.0m 4.0m 4.0m	9815.950	43.0m 43.0m 43.0m	90 0 0		25	25	25	6	22		85	85	85	6	26

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium sometion Der	Search 2	Major	Semi	Minor	Min Samples	Optimium Semalar Dar
BT_CO_DOMAIN_1104HG	10131.826	7340.970	4.0m 4.0m 4.0m	24470.616	32.0m 32.0m 32.0m	90 0 0		25	25	25	6	22		70	70	70	6	26
BT_CO_DOMAIN_1104LG	5622.362	3880.887	4.0m 4.0m 4.0m	13452.471	32.0m 32.0m 32.0m	90 0 0		25	25	25	6	22		50	50	50	6	26
BT_CO_DOMAIN_1105	158435.750	233436.299	7.0m 7.0m 6.0m	314586.917	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	22		80	80	40	6	26
BT_CO_DOMAIN_1106HG	568662.975	652156.587	4.0m 4.0m 3.0m	651510.530	25.0m 25.0m 8.0m	-80 115 90		30	30	10	10	24		65	65	40	7	28
BT_CO_DOMAIN_1106LG	5055.264	7670.306	4.0m 4.0m 3.0m	14394.897	40.0m 40.0m 9.0m	-80 115 90		30	30	10	10	24		65	65	40	7	28
BT_CO_DOMAIN_1107	6785.302	8448.303	7.0m 7.0m 6.0m	12566.694	22.0m 22.0m 9.0m	-90 90 90		35	35	10	8	14		80	80	40	6	14
BT_CO_DOMAIN_1108	43925.470	64935.973	7.0m 7.0m 6.0m	108586.851	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	20		80	80	40	6	20
BT_CO_DOMAIN_1109	3116983.013	3963241.466	7.0m 7.0m 6.0m	4637501.425	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	22		80	80	40	6	26
BT_CO_DOMAIN_1110	5635.814	7620.706	7.0m 7.0m 6.0m	12776.992	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	17		80	80	40	6	17
BT_CO_DOMAIN_1111	258249.391	327605.969	7.0m 7.0m 6.0m	457475.786	22.0m 22.0m 9.0m	-90 90 90		35	35	10	8	12		80	80	40	6	12
BT_CO_DOMAIN_1112	32687.744	45495.343	7.0m 7.0m 6.0m	75273.733	22.0m 22.0m 9.0m	-90 90 90		35	35	10	8	12		80	80	40	6	12
BT_CO_DOMAIN_1113	36094.583	46615.116	7.0m 7.0m 6.0m	71625.814	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	18		80	80	40	6	18
BT_CO_DOMAIN_1114	5196.665	8043.547	7.0m 7.0m 6.0m	14455.516	22.0m 22.0m 9.0m	-90 90 90		35	35	10	6	20		80	80	40	6	20
BT_CO_DOMAIN_1201	36640.709	56140.963	5.0m 5.0m 5.0m	72087.740	22.0m 22.0m 12.0m	-90 90 160		35	35	10	7	20		80	80	40	6	24
BT_CO_DOMAIN_1202	82623.695	139000.249	5.0m 5.0m 5.0m	172965.603	22.0m 22.0m 12.0m	-90 90 160		35	35	10	7	20		80	80	40	6	24
BT_CO_DOMAIN_1203	33851.744	48863.694	5.0m 5.0m 5.0m	61628.714	22.0m 22.0m 12.0m	-90 90 160		35	35	20	7	20		80	80	50	6	22
BT_CO_DOMAIN_1204	19719.070	6877.430	5.0m 5.0m 5.0m	21973.394	15.0m 15.0m 12.0m	-90 90 160		35	35	20	7	20		80	80	50	6	22
BT_CO_DOMAIN_1205HG	3003.083	3018.743	3.0m 3.0m 3.0m	7865.099	20.0m 20.0m 20.0m	90 0 0		25	25	25	6	24		100	100	100	6	28
BT_CO_DOMAIN_1205LG	3460.016	4624.691	3.0m 3.0m 3.0m	14448.671	20.0m 20.0m 20.0m	90 0 0		25	25	25	6	24		50	50	50	6	28
BT_CO_DOMAIN_1206HG	265368.076	269050.166	5.0m 5.0m 4.0m	179693.195	40.0m 40.0m 15.0m	-90 120 90		35	35	20	6	24		70	70	40	6	28
BT_CO_DOMAIN_1206LG	6817.804	7762.239	5.0m 5.0m 4.0m	5505.902	40.0m 40.0m 15.0m	-90 120 90		35	35	20	6	24		70	70	40	6	28
BT_CO_DOMAIN_1207HG	522518.629	474228.317	5.0m 5.0m 3.0m	308537.598	16.0m 16.0m 10.0m	-90 90 90		25	25	10	6	24		65	65	30	6	28
BT_CO_DOMAIN_1207LG	2837.853	2939.303	5.0m 5.0m 3.0m	2046.372	16.0m 16.0m 10.0m	-90 90 90		25	25	10	6	24		65	65	30	6	28
BT_CO_DOMAIN_1208	130026.278	223826.671	5.0m 5.0m 5.0m	272445.807	22.0m 22.0m 12.0m	-90 90 160		35	35	10	7	20		80	80	40	6	24
BT_CO_DOMAIN_1209	78862.649	122310.725	5.0m 5.0m 5.0m	119973.465	25.0m 25.0m 12.0m	-90 90 160		35	35	10	7	20		80	80	40	6	24
BT_CO_DOMAIN_1210HG	50205.255	60561.191	5.0m 5.0m 5.0m	93007.251	22.0m 22.0m 22.0m	90 0 0		25	25	25	6	24		65	65	65	6	28

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium samalar Bar	Search 2	Major	Semi	Minor	Min Samples	Optimium souther Der
BT_CO_DOMAIN_1210LG	4570.893	5205.096	5.0m 5.0m 5.0m	8101.469	22.0m 22.0m 22.0m	90 0 0		25	25	25	6	24		65	65	65	6	28
BT_CO_DOMAIN_1211HG	545417.325	550024.923	5.0m 5.0m 5.0m	321186.429	15.0m 15.0m 15.0m	90 0 0		25	25	25	6	24		100	100	100	6	28
BT_CO_DOMAIN_1211LG	3919.318	7953.149	5.0m 5.0m 5.0m	4361.767	15.0m 15.0m 15.0m	90 0 0		25	25	25	6	24		100	100	100	6	28
BT_CO_DOMAIN_1212HG	79773.938	93950.985	5.0m 5.0m 5.0m	65295.702	16.0m 16.0m 16.0m	90 0 0		45	45	45	6	24		200	200	200	6	28
BT_CO_DOMAIN_1212LG	7902.181	9613.470	5.0m 5.0m 5.0m	7320.056	16.0m 16.0m 16.0m	90 0 0		45	45	45	6	24		200	200	200	6	28
BT_CO_DOMAIN_1301HG	165716.956	318168.988	4.0m 4.0m 4.0m	170039.424	18.0m 18.0m 10.0m	-90 95 90		40	40	15	7	22		100	100	6	7	26
BT_CO_DOMAIN_1301LG	11127.002	19931.174	4.0m 4.0m 4.0m	19406.906	18.0m 18.0m 10.0m	-90 95 90		40	40	15	7	22		100	100	6	7	26
BT_CO_DOMAIN_1302HG	171541.788	120766.865	4.0m 4.0m 4.0m	124512.074	13.0m 13.0m 13.0m	90 0 0		25	25	25	7	22		65	65	65	7	26
BT_CO_DOMAIN_1302LG	16200.932	11832.302	4.0m 4.0m 4.0m	29940.114	13.0m 13.0m 13.0m	90 0 0		25	25	25	7	22		65	65	65	7	26
BT_CO_DOMAIN_1303HG	53810.997	58124.677	4.0m 4.0m 4.0m	36166.083	20.0m 20.0m 20.0m	90 0 0		25	25	25	7	18		65	65	65	7	22
BT_CO_DOMAIN_1303LG	3535.672	3217.958	4.0m 4.0m 4.0m	6174.273	20.0m 20.0m 20.0m	90 0 0		25	25	25	7	18		65	65	65	7	22
BT_CO_DOMAIN_1304HG	251906.817	394051.987	4.0m 4.0m 4.0m	206653.561	30.0m 30.0m 7.0m	-90 100 90		30	30	10	7	18		75	75	40	7	22
BT_CO_DOMAIN_1304LG	2688.992	4409.894	5.0m 5.0m 5.0m	13519.717	45.0m 45.0m 10.0m	-90 100 90		30	30	10	7	18		75	75	40	7	22
BT_CO_DOMAIN_1305	104318.915	128544.388	4.0m 4.0m 4.0m	93663.901	22.0m 22.0m 22.0m	90 0 0		30	30	30	9	20		80	80	80	10	24
BT_CO_DOMAIN_1306	43777.127	61317.059	4.0m 4.0m 4.0m	49698.746	22.0m 22.0m 22.0m	90 0 0		30	30	30	9	20		80	80	80	7	24
BT_CO_DOMAIN_1307	40208.489	51221.183	4.0m 4.0m 4.0m	42008.208	22.0m 22.0m 22.0m	90 0 0		30	30	30	9	20		80	80	80	7	24
BT_CO_DOMAIN_1308	375148.313	441008.757	4.0m 4.0m 4.0m	373431.885	22.0m 22.0m 22.0m	90 0 0		30	30	30	9	15		80	80	80	7	15
BT_CO_DOMAIN_1309	149217.436	203239.781	4.0m 4.0m 4.0m	162605.800	22.0m 22.0m 22.0m	90 0 0		30	30	30	9	20		80	80	80	7	24
BT_CO_DOMAIN_1401	60937.528	163382.889	5.0m 5.0m 4.0m	82094.891	18.0m 18.0m 7.0m	-90 90 -110		45	45	15	7	17		90	90	40	6	17
BT_CO_DOMAIN_1402HG	47871.823	92769.934	4.0m 4.0m 3.0m	50087.476	28.0m 28.0m 7.0m	-90 90 90		50	50	15	8	20		250	250	100	6	24
BT_CO_DOMAIN_1402LG	2895.884	2358.317	5.0m 5.0m 3.0m	6326.064	38.0m 38.0m 7.0m	-90 90 90		50	50	15	8	20		250	250	100	6	24
BT_CO_DOMAIN_1403HG	73485.970	123157.553	4.0m 4.0m 3.0m	119292.551	16.0m 16.0m 7.0m	260 100 90		40	40	10	8	20		85	85	45	8	24
BT_CO_DOMAIN_1403LG	8769.527	23855.658	4.0m 4.0m 3.0m	16217.485	16.0m 16.0m 7.0m	260 100 90		40	40	10	8	20		85	85	45	8	24
BT_CO_DOMAIN_1404	909.252	1916.001	5.0m 5.0m 4.0m	931.888	18.0m 18.0m 7.0m	-90 90 -110		45	45	15	7	17		90	90	40	6	17
BT_CO_DOMAIN_1405	5587.219	13704.350	5.0m 5.0m 4.0m	6936.833	18.0m 18.0m 7.0m	-90 90 -110		45	45	15	7	23		90	90	40	6	27
BT_CO_DOMAIN_1406	3189.337	7469.282	5.0m 5.0m 4.0m	3785.408	18.0m 18.0m 7.0m	-90 90 -110		45	45	15	7	23		90	90	40	6	27

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samalar Bar	Search 2	Major	Semi	Minor	Min Samples	Optimium Samalor Bor
BT_CO_DOMAIN_1407	12826.403	26714.287	5.0m 5.0m 4.0m	13932.925	18.0m 18.0m 7.0m	-90 90 -110		45	45	15	7	15		90	90	40	6	15

Table 14: Search parameters – OK indicator estimate – bismuth

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samalas Dar	Search 2	Major	Semi	Minor	Min Samples	Optimium Semalas Bar
IND_BI_DOMAIN_1101	0.030	0.050	5.0m 5.0m 5.0m	0.050	43.0m 43.0m 10.0m	-90 90 90		40	40	15	8	22		80	80	30	8	26
IND_BI_DOMAIN_1201	0.070	0.070	3.0m 3.0m 3.0m	0.060	25.0m 25.0m 25.0m	90 0 0		30	30	30	8	20		80	80	80	6	24
IND_BI_DOMAIN_1204	0.050	0.050	4.0m 4.0m 4.0m	0.020	20.0m 20.0m 10.0m	-90 90 90		35	35	15	8	18		80	80	30	6	22
IND_BI_DOMAIN_1206	0.070	0.070	5.0m 5.0m 3.0m	0.085	20.0m 20.0m 10.0m	-85 90 140		40	40	15	8	22		80	80	30	6	26
IND_BI_DOMAIN_1210	0.070	0.070	4.0m 4.0m 4.0m	0.060	20.0m 20.0m 20.0m	90 0 0		35	35	35	8	22		150	150	150	6	26
IND_BI_DOMAIN_1302	0.030	0.110	9.0m 9.0m 4.0m	0.110	31.0m 31.0m 10.0m	-90 90 90		40	40	15	8	19		80	80	30	6	23
IND_BI_DOMAIN_1304	0.120	0.080	5.0m 5.0m 5.0m	0.044	30.0m 30.0m 30.0m	90 0 0		40	40	40	8	19		80	80	80	6	23
IND_BI_DOMAIN_1403	0.080	0.070	5.0m 5.0m 5.0m	0.066	12.0m 12.0m 12.0m	90 0 0		25	25	25	8	19		60	60	60	6	23
BT_BI_DOMAIN_1000	368476.397	785467.924	15.0m 3.0m 5.0m	245096.531	54.0m 14.0m 11.0m	-90 90 90		45	20	15	9	26		80	25	20	9	30
BT_BI_DOMAIN_1101HG	3126057.369	4025130.126	5.0m 5.0m 5.0m	4103133.523	43.0m 43.0m 10.0m	-90 90 90		40	40	15	8	18		80	80	30	8	22
BT_BI_DOMAIN_1101LG	510.324	586.002	5.0m 5.0m 5.0m	677.220	43.0m 43.0m 10.0m	-90 90 90		40	40	15	3	7		80	80	30	3	7
BT_BI_DOMAIN_1102	7754664.660	16688769.118	13.0m 13.0m 5.0m	8441660.574	40.0m 40.0m 10.0m	-80 105 90		40	40	15	6	15		80	80	35	6	21
BT_BI_DOMAIN_1103	8169569.767	24569842.417	13.0m 13.0m 5.0m	20496649.937	40.0m 40.0m 10.0m	-80 105 90		40	40	15	6	15		80	80	35	6	21
BT_BI_DOMAIN_1105	2236421.007	6660724.322	13.0m 13.0m 5.0m	6128144.983	40.0m 40.0m 10.0m	-80 105 90		40	40	15	6	17		80	80	35	6	17
BT_BI_DOMAIN_1106	496931.137	1366088.027	13.0m 13.0m 5.0m	974814.845	40.0m 40.0m 10.0m	-80 105 90		40	40	15	6	17		80	80	35	6	17
BT_BI_DOMAIN_1201HG	9754021.082	6674757.776	3.0m 3.0m 3.0m	2983171.984	25.0m 25.0m 25.0m	90 0 0		30	30	30	8	20		80	80	80	6	24
BT_BI_DOMAIN_1201LG	833178.708	612818.742	3.0m 3.0m 3.0m	1938472.172	30.0m 30.0m 30.0m	90 0 0		30	30	30	8	20		80	80	80	6	24
BT_BI_DOMAIN_1202	667580.985	1083498.487	7.0m 7.0m 5.0m	509643.460	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	15		100	100	40	6	15
BT_BI_DOMAIN_1203	304995.883	840602.700	7.0m 7.0m 5.0m	484613.132	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	26		100	100	40	6	30
BT_BI_DOMAIN_1204HG	2215017.273	3290702.501	4.0m 4.0m 4.0m	1520378.303	20.0m 20.0m 10.0m	-90 90 90		35	35	15	8	18		100	100	45	6	22
BT_BI_DOMAIN_1204LG	31196.561	35054.778	4.0m 4.0m 4.0m	68882.599	20.0m 20.0m 10.0m	-90 90 90		35	35	15	8	18		100	100	45	6	22
BT_BI_DOMAIN_1205	487338.359	1138224.441	7.0m 7.0m 5.0m	670685.913	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	26		100	100	40	6	32
BT_BI_DOMAIN_1206HG	1425172.232	718366.623	5.0m 5.0m 3.0m	535244.289	20.0m 20.0m 10.0m	-85 90 140		40	40	15	8	22		80	80	30	6	26
BT_BI_DOMAIN_1206LG	4769.158	18640.347	5.0m 5.0m 3.0m	10812.169	20.0m 20.0m 10.0m	-85 90 140		40	40	15	8	22		80	80	30	6	26

Domain	Nugget	Sill 1		Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Sometor Dor	Search 2	Major	Semi	Minor	Min Samples	Optimium Semular Bor
BT_BI_DOMAIN_1207	3660318.471	5340073.011	7.0m	7.0m 5.0m	2449621.792	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	26		100	100	40	6	27
BT_BI_DOMAIN_1208	4802848.438	7714715.383	7.0m	7.0m 5.0m	4732554.457	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	15		100	100	40	6	15
BT_BI_DOMAIN_1209	275888.718	645378.890	7.0m	7.0m 5.0m	370764.752	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	26		100	100	40	6	30
BT_BI_DOMAIN_1210HG	78823.262	35809.264	4.0m	4.0m 4.0m	22917.925	20.0m 20.0m 20.0m	90 0 0		35	35	35	8	22		150	150	150	6	26
BT_BI_DOMAIN_1210LG	3044.333	1561.470	4.0m	4.0m 4.0m	1022.013	20.0m 20.0m 20.0m	90 0 0		35	35	35	8	22		150	150	150	6	26
BT_BI_DOMAIN_1211	2270897.646	4713771.180	7.0m	7.0m 5.0m	2573169.720	26.0m 26.0m 8.0m	255 90 20		35	35	15	9	21		100	100	40	6	21
BT_BI_DOMAIN_1212	20368.844	49806.716	7.0m	7.0m 5.0m	32499.716	26.0m 26.0m 8.0m	255 90 20		35	35	15	6	13		100	100	40	6	13
BT_BI_DOMAIN_1213	1722.899	5101.171	7.0m	7.0m 5.0m	3314.670	26.0m 26.0m 8.0m	255 90 20		35	35	15	6	13		100	100	40	6	13
BT_BI_DOMAIN_1301	1379032.139	1314306.875	4.0m	4.0m 4.0m	857252.629	43.0m 43.0m 13.0m	-90 90 110		35	35	15	8	22		80	80	35	6	22
BT_BI_DOMAIN_1302HG	4534684.401	3154759.751	7.0m	7.0m 4.0m	5421772.452	31.0m 31.0m 10.0m	-90 90 90		40	40	15	8	19		80	80	30	6	23
BT_BI_DOMAIN_1302LG	582.697	417.906	7.0m	7.0m 4.0m	1014.050	31.0m 31.0m 10.0m	-90 90 90		40	40	15	8	19		80	80	30	6	23
BT_BI_DOMAIN_1303	2672674.144	2561345.236	4.0m	4.0m 4.0m	1785706.266	43.0m 43.0m 13.0m	-90 90 110		35	35	15	8	23		80	80	35	6	26
BT_BI_DOMAIN_1304HG	1105690.970	746009.081	5.0m	5.0m 5.0m	484624.840	30.0m 30.0m 30.0m	90 0 0		40	40	40	8	19		80	80	8	6	23
BT_BI_DOMAIN_1304LG	2139.368	2011.162	5.0m	5.0m 5.0m	3844.669	30.0m 30.0m 30.0m	90 0 0		40	40	40	8	19		80	80	8	6	23
BT_BI_DOMAIN_1305	147559.631	137060.293	4.0m	4.0m 4.0m	99909.380	43.0m 43.0m 13.0m	-90 90 110		50	50	20	8	15		80	80	35	6	15
BT_BI_DOMAIN_1307	16331.502	17769.821	4.0m	4.0m 4.0m	12566.396	43.0m 43.0m 13.0m	-90 90 110		35	35	15	8	15		80	80	35	6	15
BT_BI_DOMAIN_1401	7498523.215	9563561.008	8.0m	8.0m 4.0m	5317292.871	17.0m 17.0m 6.0m	-90 90 90		35	35	15	8	20		80	80	35	6	24
BT_BI_DOMAIN_1402	51110332.179	70816733.905	8.0m	8.0m 4.0m	64290848.704	17.0m 17.0m 6.0m	-90 90 90		35	35	15	8	20		80	80	35	6	24
BT_BI_DOMAIN_1403HG	244801.629	218360.656	5.0m	5.0m 5.0m	307378.273	12.0m 12.0m 12.0m	90 0 0		25	25	25	8	19		60	60	60	6	23
BT_BI_DOMAIN_1403LG	899.232	521.117	5.0m	5.0m 5.0m	1062.508	12.0m 12.0m 12.0m	90 0 0		25	25	25	8	19		75	75	75	6	23

Table 15: Search parameters – OK indicator estimate – silver

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Semelec Boz	Search 2	Major	Semi	Minor	Min Samples	Optimium complet Box
IND_AG_DOMAIN_1000	0.050	0.036	7.0m 7.0m 6.0m	0.060	30.0m 12.0m 10.0m	-90 90 90		60	25	20	7	18		120	40	30	7	22
IND_AG_DOMAIN_1102	0.060	0.090	4.0m 4.0m 4.0m	0.088	35.0m 35.0m 7.0m	-90 90 90		30	30	10	7	18		85	85	60	5	22
IND_AG_DOMAIN_1103	0.047	0.018	4.0m 4.0m 4.0m	0.185	24.0m 24.0m 24.0m	90 0 0		30	30	30	7	18		75	75	75	5	22
IND_AG_DOMAIN_1201	0.080	0.050	4.0m 4.0m 4.0m	0.097	20.0m 20.0m 10.0m	-90 100 90		30	30	15	7	18		85	85	60	5	22
IND_AG_DOMAIN_1209	0.100	0.070	6.0m 6.0m 6.0m	0.067	35.0m 35.0m 35.0m	90 0 0		30	30	30	7	18		95	95	95	5	22
IND_AG_DOMAIN_1210	0.080	0.050	8.0m 8.0m 8.0m	0.110	85.0m 85.0m 85.0m	90 0 0		50	50	50	7	18		140	140	140	5	22
IND_AG_DOMAIN_1304	0.030	0.100	5.0m 5.0m 5.0m	0.113	25.0m 25.0m 25.0m	90 0 0		30	30	30	7	24		85	85	85	5	27
IND_AG_DOMAIN_1403	0.050	0.025	5.0m 5.0m 5.0m	0.097	30.0m 30.0m 30.0m	90 0 0		30	30	30	7	18		85	85	85	5	22
BT_AG_DOMAIN_1000HG	0.640	0.497	6.0m 6.0m 5.0m	0.510	23.0m 9.0m 9.0m	-90 90 90		60	25	20	7	18		120	4	30	7	22
BT_AG_DOMAIN_1000LG	0.016	0.019	7.0m 7.0m 6.0m	0.026	30.0m 12.0m 10.0m	-90 90 90		60	25	20	7	18		120	4	30	7	22
BT_AG_DOMAIN_1101	3.278	4.307	6.0m 6.0m 4.0m	2.460	15.0m 15.0m 8.0m	-85 110 10		30	30	15	5	18		60	60	40	5	21
BT_AG_DOMAIN_1102HG	0.457	0.749	4.0m 4.0m 4.0m	1.709	35.0m 35.0m 7.0m	-90 90 90		30	30	10	7	18		85	85	60	5	22
BT_AG_DOMAIN_1102LG	0.313	0.482	4.0m 4.0m 4.0m	1.056	35.0m 35.0m 7.0m	-90 90 90		30	30	10	7	18		110	110	85	5	22
BT_AG_DOMAIN_1103HG	2.260	2.690	4.0m 4.0m 4.0m	2.052	24.0m 24.0m 24.0m	90 0 0		30	30	30	7	18		90	90	90	5	22
BT_AG_DOMAIN_1103LG	0.075	0.051	4.0m 4.0m 4.0m	0.068	24.0m 24.0m 24.0m	90 0 0		30	30	30	7	18		90	90	90	5	22
BT_AG_DOMAIN_1105	5.063	7.006	6.0m 6.0m 4.0m	4.832	15.0m 15.0m 8.0m	-85 110 10		30	30	15	12	17		60	60	40	8	12
BT_AG_DOMAIN_1106	1.321	1.151	6.0m 6.0m 4.0m	0.752	15.0m 15.0m 8.0m	-85 110 10		30	30	15	12	17		70	70	50	8	12
BT_AG_DOMAIN_1201HG	0.473	0.451	4.0m 4.0m 4.0m	0.416	45.0m 45.0m 10.0m	-90 100 90		30	30	15	7	18		85	85	60	5	22
BT_AG_DOMAIN_1201LG	0.191	0.150	4.0m 4.0m 4.0m	0.652	45.0m 45.0m 10.0m	-90 100 90		30	30	15	7	18		85	85	60	5	22
BT_AG_DOMAIN_1202	0.756	0.993	6.0m 6.0m 4.0m	0.769	28.0m 28.0m 12.0m	250 90 -140		30	30	15	12	15		60	6	40	8	15
BT_AG_DOMAIN_1203	2.416	2.224	6.0m 6.0m 4.0m	2.536	30.0m 30.0m 12.0m	250 90 -140		30	30	15	8	18		60	60	40	8	24
BT_AG_DOMAIN_1204	0.624	1.193	12.0m 10.0m 6.0m	1.881	47.0m 30.0m 15.0m	-90 90 30		45	25	20	6	19		90	60	50	6	24
BT_AG_DOMAIN_1205	1.055	1.441	6.0m 6.0m 4.0m	1.126	28.0m 28.0m 12.0m	250 90 -140		30	30	15	8	18		60	60	40	8	24
BT_AG_DOMAIN_1206	1.539	1.976	6.0m 6.0m 4.0m	1.434	28.0m 28.0m 12.0m	250 90 -140		30	30	15	8	18		60	60	40	8	24

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Semalor Bor	Search 2	Major	Semi	Minor	Min Samples	Optimium Samalos Bor
BT_AG_DOMAIN_1207	0.993	1.234	5.0m 5.0m 4.0m	0.954	24.0m 24.0m 8.0m	250 90 -140		30	30	15	8	18		60	60	40	8	24
BT_AG_DOMAIN_1208	1.150	1.419	6.0m 6.0m 4.0m	1.174	28.0m 28.0m 12.0m	250 90 -140		30	30	15	12	15		60	60	40	12	15
BT_AG_DOMAIN_1209HG	0.662	0.666	6.0m 6.0m 6.0m	0.640	35.0m 35.0m 35.0m	90 0 0		30	30	30	7	18		95	95	95	5	22
BT_AG_DOMAIN_1209LG	0.438	0.369	6.0m 6.0m 6.0m	0.363	35.0m 35.0m 35.0m	90 0 0		30	30	30	7	18		95	95	95	5	22
BT_AG_DOMAIN_1210HG	1.965	0.647	4.0m 4.0m 4.0m	1.936	60.0m 60.0m 60.0m	90 0 0		50	50	50	7	18		160	160	160	5	22
BT_AG_DOMAIN_1210LG	0.338	0.309	4.0m 4.0m 4.0m	0.435	30.0m 30.0m 30.0m	90 0 0		50	50	50	7	18		160	160	160	5	22
BT_AG_DOMAIN_1211	3.021	2.924	5.0m 5.0m 4.0m	1.964	22.0m 22.0m 8.0m	250 90 -140		30	30	15	8	18		75	75	50	8	21
BT_AG_DOMAIN_1212	4.466	3.634	5.0m 5.0m 4.0m	2.557	22.0m 22.0m 8.0m	250 90 -140		30	30	15	8	13		90	90	70	8	13
BT_AG_DOMAIN_1213	3.110	3.287	5.0m 5.0m 4.0m	2.571	22.0m 22.0m 8.0m	250 90 -140		30	30	15	8	13		90	90	70	8	13
BT_AG_DOMAIN_1301	3.068	4.572	6.0m 6.0m 3.0m	7.106	24.0m 24.0m 8.0m	-60 70 90		30	30	15	8	18		80	80	50	8	22
BT_AG_DOMAIN_1302	3.752	5.446	6.0m 6.0m 3.0m	6.696	24.0m 24.0m 8.0m	-60 70 90		30	30	15	8	18		80	80	50	8	24
BT_AG_DOMAIN_1303	1.956	3.175	6.0m 6.0m 3.0m	4.653	24.0m 24.0m 8.0m	-60 70 90		30	30	15	8	18		80	80	50	8	24
BT_AG_DOMAIN_1304HG	2.017	1.256	5.0m 5.0m 5.0m	0.967	22.0m 22.0m 22.0m	90 0 0		30	30	30	7	24		85	85	85	5	27
BT_AG_DOMAIN_1304LG	0.454	0.270	5.0m 5.0m 5.0m	0.223	22.0m 22.0m 22.0m	90 0 0		30	30	30	7	24		85	85	85	5	27
BT_AG_DOMAIN_1305	6.343	8.295	6.0m 6.0m 3.0m	11.966	24.0m 24.0m 8.0m	-60 70 90		30	30	15	8	15		85	85	50	6	15
BT_AG_DOMAIN_1307	0.440	0.572	6.0m 6.0m 3.0m	0.984	24.0m 24.0m 8.0m	-60 70 90		30	30	15	8	15		85	85	50	6	15
BT_AG_DOMAIN_1401	4.682	9.441	6.0m 6.0m 3.0m	5.114	65.0m 65.0m 9.0m	-90 90 80		30	30	15	6	18		80	80	5	6	24
BT_AG_DOMAIN_1402	0.070	0.078	6.0m 6.0m 3.0m	0.032	65.0m 65.0m 9.0m	-90 90 80		30	30	15	8	17		80	80	5	6	17
BT_AG_DOMAIN_1403HG	1.972	2.454	5.0m 5.0m 5.0m	4.810	40.0m 40.0m 40.0m	90 0 0		30	30	30	7	18		85	85	85	5	22
BT_AG_DOMAIN_1403LG	0.426	0.612	5.0m 5.0m 5.0m	1.365	40.0m 40.0m 40.0m	90 0 0		30	30	30	7	18		85	85	85	5	22

 Table 16: Search parameters – OK indicator estimate – density

Domain	Nugget	Sill 1	Range 1 (m)	Sill 2	Range 2 (m)	Rotation (A+X-Z)	Search 1	Major	Semi	Minor	Min Samples	Optimium Samples Per Sector	Search 2	Major	Semi	Minor	Min Samples	Optimium Samples Per Soctor
SG_DOMAIN_1	0.100	0.070	4.0m 4.0m 4.0m	0.090	13.0m 13.0m 13.0m	90 0 0		30	30	30	8	24		80	80	80	7	28
SG_DOMAIN_2	0.130	0.050	4.0m 4.0m 4.0m	0.050	35.0m 35.0m 35.0m	90 0 0		30	30	30	7	28		120	120	120	6	32
SG_DOMAIN_3	0.140	0.080	4.0m 4.0m 4.0m	0.080	25.0m 25.0m 25.0m	90 0 0		45	45	45	6	16		250	250	250	6	20
SG_DOMAIN_4	0.050	0.054	3.0m 3.0m 3.0m	0.075	18.0m 18.0m 18.0m	90 0 0		35	35	35	7	25		400	400	400	7	29

Composites used	Magn wt%	Magn wt%	Magn wt%	Magn wt%	Magn regressed
Domain	BT_MAGN_REG_1100	BT_MAGN_REG_1300	BT_MAGN_REG_1400	BT_MAGN_REG_4	BT_MAGN_REG_4
Nugget	45.56623	39.40787	100.02445	19.56070	19.56070
Sill 1	93.74624	131.89569	155.65497	58.98616	58.98616
Range 1 (m)	6.0000m 6.0000m 6.0000m	16.0000m 16.0000m 10.0000m	32.0000m 21.0000m 21.0000m	3.0000m 3.0000m 2.0000m	3.0000m 3.0000m 2.0000m
Sill 2	84.34542	101.66978	83.05699	26.18000	26.18000
Range 2 (m)	25.0000m 15.0000m 10.0000m	60.0000m 30.0000m 20.0000m	68.0000m 25.0000m 25.0000m	14.0000m 14.0000m 5.0000m	14.0000m 14.0000m 5.0000m
Sill 3	160.51687	0.00000	0.00000	26.88886	26.88886
Range 3 (m)	75.0000m 41.0000m 30.0000m			25.0000m 25.0000m 13.0000m	25.0000m 25.0000m 13.0000m
Sill 4	0		0	0	0
Range 4 (m)		16 16 10			
Rotation (A+X-Z)	-70 70 90	210 40 90	-90 60 150	-80 80 -110	-80 80 -110
Outliers	Y	Ν	Υ	Ν	Ν
Threshold	20		40		
Distance	40		40		
Use Opt Samples Per DH	Y	Y	Y	Y	Y
Opt Samples Per DH	4	4	4	4	4
Number Sectors	1	1	1	1	1
Search 1					
Major	50	50	50	35	350
Semi	35	25	30	35	350
Minor	25	15	30	20	200
Min Samples	8	8	8	7	5

Table 17: Search parameters – OK indicator estimate – magnetite

Composites used	Magn wt%	Magn wt%	Magn wt%	Magn wt%	Magn regressed
Domain	BT_MAGN_REG_1100	BT_MAGN_REG_1300	BT_MAGN_REG_1400	BT_MAGN_REG_4	BT_MAGN_REG_4
Optimium Samples Per Sector	22	20	20	20	22
Search 2					
Major	170	250	250	7	
Semi	110	200	150	70	
Minor	100	130	150	50	
Min Samples	5	5	5	5	
Optimium Samples Per Sector	24	22	22	22	
Panel Size (X:Y:Z)	5X5X2.5	5X5X2.5	5X5X2.5	5X5X2.5	5X5X2.5
SMU size (X:Y:Z)					
Discretisation	5X5X3	5X5X3	5X5X3	5X5X3	5X5X3

Figure 12: Jupiter Zone Magnetite vs SG and Fe% regression.

Figure 13: Jupiter West Zone Magnetite vs SG and Fe% regression

Figure 14: Jupiter Deps Zone Magnetite vs SG and Fe% Regression

ASX Announcement

20 April 2022

SUPPLEMENTARY INFORMATION

Samples used for the metallurgical test work were taken from holes 20CRD001 and 20CRD002. Please see announcements "Stunning Gold Intercepts from Rover 1 – Amended" (14 October 2020) and "Castile receives Significant Copper Results from Rover 1" (20 October 2020) for the results of 20CRD001 and "Rover 1 Drilling Program Delivers more significant Copper Gold Intercepts" (2 November 2020) for the results of 20CRD002.

These two holes were logged and assayed by Castile Resources Geologists. Ten intervals were selected for the Metallurgical Test work to provide a representative sample of the ore body and delivered to the ALS Laboratory in Perth, providing sufficient mass for the test work which is being managed by METS Engineering. A single composite was created from these intervals to represent the ore body, weighing approximately 350kg. From hole 20CRD001 intervals 479.95m – 492m, 493m – 508.75m, 509.45 – 511.4m, 518.0 – 520.15m, 521.0 – 522.5m and 527.0 – 536.0m were selected. From hole 20CRD002, intervals 541.6m – 563.08m, 564.0m – 566.0m, 567.0m – 573.0m and 578.8m – 588.0m were selected. The location of holes 20CRD001 and 20CRD002 are shown below. (See Figure 3).

Figure 2: Long projection of Rover 1

ASX Announcement

20 April 2022

All material for the test work were recovered from these diamond holes. The holes were drilled at HQ size to enable sufficient material to be gathered for the test work. This material was stage crushed and rotary split five ways. The five splits were used in the following fashion:

- 1. Grind establishment to determine the P_{80} 106 μ m targeted grind size.
- 2. Mineralogy Test work via QEMSCAN
- 3. Determine the Head Assays of the composite
- 4. Determine the size fraction of the valuable minerals (gold, copper, cobalt, bismuth, and magnetite)
- 5. Sighter and sequential floatation test work.

Previous Test work Completed

The following summarises the test work that has been conducted previously:

- 1. Preliminary work to understand the rock mass, including comminution, strength and bond work analysis. The results of these tests are contained in "Outstanding Metallurgical Test Results from Rover 1" (20 September 2021).
- 2. Sighter tests were then carried out for the bulk sulphide float, followed by a bulk sulphide float. The results of this test work are summarised below:

Test Number	Lime Addition for Rougher Stage	Lime Addition for Scavenger Stage	MIBC (Ro 1, 2, 3 & Scav)	Mass Contained in Ro Conc	Mass Contained in Tail
	(g)	(g)	(Drops)	(g)	(g)
BF1991	10.59	2.11	26, 40, 20 & 10	11,263.3	48,736.7
BF1992	9.22	3.64	50, 25, 5 & 4	11,251.4	48,748.6
BF1993	10.93	3.83	50, 25, 6 & 4	11,000.5	48,999.5
BF1994	9.45	3.89	55, 25, 10 & 25	10,706.6	49,293.4
BF1995	9.30	5.62	51, 25, 20 & 15	11,122.1	48,877.9

Table 3 Bulk Floatation Test Results

Table 4: summarises the results obtained from the Bulk Floatation Test work.

Table 4: Recoveries from Bulk Flotation Testing of Rover 1 Ore (METS Engineering)

Commodity	Gold	Copper	Cobalt	Bismuth
Gravity Recovery	21.4%			
Bulk Flotation Recovery	72.4%	97.8%	88.0%	89.7%
TOTAL RECOVERY	93.8%	97.8%	88.0%	89.7%

The figure below (Figure 3) shows the bulk floatation test work.

ASX Announcement

20 April 2022

Figure 3 – Bulk Flotation Test

The magnetite test work was announced in "New Environmentally Sustainable Product at Rover" (19 November 2021). In this test, the ore (sized at $P_{80}106\mu$ m) was passed over a Low Intensity Magnetic Separator (LIMS) set at 600 gauss. This magnetic fraction was then reground to 53 μ m (to meet the specification of the Industrial Mineral). This reground material was then repassed over the LIMS unit and then screened to size fractions to produce the high grade Industrial Mineral.

A summary of the results is shown below:

Sample	Magnetite Fe ₃ O ₄ %	Al ₂ O ₃ (%)	SiO ₂ (%)	Total Fe (%)	FeO (%)	SG
P_{60} 53µm Concentrate	96.6	0.33	2.99	66.0	28.8	4.8
P ₉₅ 53µm Concentrate	96.4	0.26	2.05	67.3	30.1	4.9

Table 5: Magnetite Quality

For both products, sizing specifications were obtained as shown below in Tables 6 and 7.

ASX Announcement

20 April 2022

Table 6: P₆₀ 53µm Magnetite Concentrate

Size (µm)	Weight (g)	Weight (%)	Weight % <
75	111.9	23.0	77.0
53	76.2	15.7	61.3
45	35.3	7.3	54.1
-45	262.9	54.1	0.0
Total	486.3	100.0	

Table 7: P₉₅ 53µm Magnetite Concentrate

Size (µm)	Weight (g)	Weight (%)	Weight % <
75	7.7	1.7	98.3
53	21.8	4.7	93.7
45	16.1	3.5	90.2
-45	419.5	90.2	0.0
Total	465.1	100.0	

Oxidation Test work

Three oxidation tests were carried out simultaneously, investigating the impact of changing pressures and temperatures. All three tests were carried out over a period of 120 minutes at the ALS Laboratory and contained 200g of material that had previously been floated and stored from the bulk floatation process. The material from the float was then reground to $P_{80}45\mu m$, simulating feed to an autoclave with distilled water added to achieve the desired density. The results of the three tests (after 120 minutes) are below:

	Test 1	Test 2	Test 3		
	HY11815	HY11816	HY11817		
Temperature (^o C)	180	200	220		
Total Pressure (kPa)	1,702	2,254	3,018		
Gold Recovery	98.0	97.1	99.7		
Copper Recovery	99.4	99.5	99.6		
Cobalt Recovery	99.1	98.9	99.6		
Bismuth Recovery	24.6	15.8	15.7		

Table 8 Oxidation Test Work

The gold recovery numbers from Table 8, are from subsequent extraction utilising standard Carbon in Leach. The gold is extracted quickly (within two hours). The tests were carried out utilising Perth Tap Water and adding lime and cyanide.

Future Test work

Limited future test work is planned at this stage. Given the low recovery of cobalt and gold by the bulk floatation, further testing considering alternative flocculants or a larger mass pull may be conducted.

A fourth oxidation test will be carried out using the same bulk floatation material without being reground to $45 \mu m$ to determine if grind size significantly impacts the recovery of the key products. It is planned for this test to occur at 180° C and 1,702kPa.